×

Birman-Hilden bundles. II. (English. Russian original) Zbl 1535.57044

Sib. Math. J. 65, No. 2, 351-362 (2024); translation from Sib. Mat. Zh. 65, No. 2, 358-373 (2024).
Summary: We study the structure of self-homeomorphism groups of fibered manifolds. A fibered topological space is a Birman-Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through fiber-preserving homeomorphisms). We prove in particular that the Birman-Hilden class contains all compact connected locally trivial surface bundles over the circle, including nonorientable ones and those with nonempty boundary, as well as all closed orientable Haken 3-manifold bundles over the circle, including nonorientable ones.
For Part I, see [the author, Sib. Math. J. 65, No. 1, 106–117 (2024; Zbl 1533.57064); translation from Sib. Mat. Zh. 65, No. 1, 125–139 (2024)].

MSC:

57R22 Topology of vector bundles and fiber bundles
55R99 Fiber spaces and bundles in algebraic topology

Citations:

Zbl 1533.57064
Full Text: DOI

References:

[1] Malyutin, AV, Birman-Hilden bundles. I, Sib. Math. J., 65, 1, 106-117, 2024 · Zbl 1533.57064 · doi:10.1134/S0037446624010117
[2] Birman J.S. and Hilden H.M., “On the mapping class groups of closed surfaces as covering spaces,” in: Advances in the Theory of Riemann Surfaces, Princeton University, Princeton (1971), 81-115 (Ann. Math. Stud.; vol. 66). · Zbl 0217.48602
[3] Birman, JS; Hilden, HM, Isotopies of homeomorphisms of Riemann surfaces and a theorem about Artin’s braid group, Bull. Amer. Math. Soc., 78, 6, 1002-1004, 1972 · Zbl 0255.57002 · doi:10.1090/S0002-9904-1972-13082-9
[4] Birman, JS; Hilden, HM, Lifting and projecting homeomorphisms, Arch. Math. (Basel), 23, 428-434, 1972 · Zbl 0247.55001 · doi:10.1007/BF01304911
[5] Birman, JS; Hilden, HM, On isotopies of homeomorphisms of Riemann surfaces, Ann. Math. (2), 97, 424-439, 1973 · doi:10.2307/1970830
[6] Birman, JS; Hilden, HM, Erratum to ‘On isotopies of homeomorphisms of Riemann surfaces’, Ann. Math. (2), 185, 345, 2017 · Zbl 1420.57053 · doi:10.4007/annals.2017.185.1.9
[7] Zieschang, H., On the homeotopy group of surfaces, Math. Ann., 206, 1-21, 1973 · Zbl 0248.55001 · doi:10.1007/BF01431525
[8] Maclachlan, C.; Harvey, WJ, On mapping-class groups and Teichmüller spaces, Proc. Lond. Math. Soc., 30, 496-512, 1975 · Zbl 0303.32020 · doi:10.1112/plms/s3-30.4.496
[9] Berstein, I.; Edmonds, AL, On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc., 247, 87-124, 1979 · Zbl 0359.55001 · doi:10.1090/S0002-9947-1979-0517687-9
[10] Fuller, T., On fiber-preserving isotopies of surface homeomorphisms, Proc. Amer. Math. Soc., 129, 4, 1247-1254, 2001 · Zbl 0977.57002 · doi:10.1090/S0002-9939-00-05642-2
[11] Aramayona, J.; Leininger, CJ; Souto, J., Injections of mapping class groups, Geom. Topol., 13, 5, 2523-2541, 2009 · Zbl 1225.57001 · doi:10.2140/gt.2009.13.2523
[12] Winarski, RR, Symmetry, isotopy, and irregular covers, Geom. Dedicata, 177, 213-227, 2015 · Zbl 1419.57006 · doi:10.1007/s10711-014-9986-y
[13] Ghaswala, T.; Winarski, RR, Lifting homeomorphisms and cyclic branched covers of spheres, Michigan Math. J., 66, 4, 885-890, 2017 · Zbl 1383.57001
[14] Atalan, F.; Medetogullari, E., The Birman-Hilden property of covering spaces of nonorientable surfaces, Ukrainian Math. J., 72, 3, 348-357, 2020 · Zbl 1458.57020 · doi:10.1007/s11253-020-01786-x
[15] Margalit, D.; Winarski, RR, Braids groups and mapping class groups: The Birman-Hilden theory, Bull. Lond. Math. Soc., 53, 3, 643-659, 2021 · Zbl 1470.57045 · doi:10.1112/blms.12456
[16] Kolbe, B.; Evans, ME, Isotopic tiling theory for hyperbolic surfaces, Geom. Dedicata, 212, 177-204, 2021 · Zbl 1468.52014 · doi:10.1007/s10711-020-00554-2
[17] Dey, S.; Dhanwani, NK; Patil, H.; Rajeevsarathy, K., Generating the Liftable Mapping Class Groups of Regular Cyclic Covers, 2021
[18] Vogt, E., Projecting isotopies of sufficiently large \(P^2 \)-irreducible \(3 \)-manifolds, Arch. Math. (Basel), 29, 6, 635-642, 1977 · Zbl 0404.57012 · doi:10.1007/BF01220467
[19] Ohshika, K., Finite subgroups of mapping class groups of geometric \(3 \)-manifolds, J. Math. Soc. Japan, 39, 3, 447-454, 1987 · Zbl 0637.57011
[20] Friedman, JL; Witt, DM, Homotopy is not isotopy for homeomorphisms of \(3 \)-manifolds, Topology, 25, 1, 35-44, 1986 · Zbl 0596.57008 · doi:10.1016/0040-9383(86)90003-0
[21] Artin, E., Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, 4, 47-72, 1925 · JFM 51.0450.01 · doi:10.1007/BF02950718
[22] Morton, HR, Infinitely many fibred knots having the same Alexander polynomial, Topology, 17, 1, 101-104, 1978 · Zbl 0383.57005 · doi:10.1016/0040-9383(78)90016-2
[23] Burde, G.; Zieschang, H., Knots, 1985, Berlin: De Gruyter, Berlin · Zbl 0568.57001
[24] Kassel, C.; Turaev, V., Braid Groups, 2008, New York: Springer, New York · Zbl 1208.20041 · doi:10.1007/978-0-387-68548-9
[25] McCoy, RA, Completely metrizable spaces of embeddings, Proc. Amer. Math. Soc., 84, 3, 437-442, 1982 · Zbl 0478.54009 · doi:10.1090/S0002-9939-1982-0640249-5
[26] Kuratowski, C., Evaluation de la classe borélienne ou projective d’un ensemble de points à l’aide des symboles logiques, Fund. Math., 17, 249-272, 1931 · Zbl 0003.10504 · doi:10.4064/fm-17-1-249-272
[27] Chernavskii, AV, Local contractibility of the group of homeomorphisms of a manifold, Math. USSR Sb., 8, 3, 287-333, 1969 · Zbl 0193.51501 · doi:10.1070/SM1969v008n03ABEH001121
[28] Chernavskii A.V., “Local contractibility of the group of homeomorphisms of \({𝕉}^n \),” in: Geometry, Topology, and Mathematical Physics. I. Dedicated to S.P. Novikov on the Occasion of His 70 Birthday, MAIK, Moscow (2008), 201-215 [Russian] (Trudy MIAN; vol. 263).
[29] Rosendal, C., Coarse Geometry of Topological Groups, 2021, Cambridge: Cambridge University, Cambridge · Zbl 1504.22001 · doi:10.1017/9781108903547
[30] Viro, OY; Ivanov, OA; Netsvetaev, NY; Kharlamov, VM, Elementary Topology: Problem Textbook, 2008, Providence: Amer. Math. Soc., Providence · Zbl 1180.54001 · doi:10.1090/mbk/054
[31] Whitehead, JHC, Combinatorial homotopy. I, Bull. Amer. Math. Soc., 55, 213-245, 1949 · Zbl 0040.38704 · doi:10.1090/S0002-9904-1949-09175-9
[32] Milnor, J., On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90, 2, 272-280, 1959 · Zbl 0084.39002
[33] Hanner, O., Some theorems on absolute neighborhood retracts, Ark. Mat., 1, 389-408, 1951 · Zbl 0042.41102 · doi:10.1007/BF02591376
[34] Baer, R., Kurventypen auf Flächen, J. Reine Angew. Math., 156, 231-246, 1927 · JFM 53.0547.01 · doi:10.1515/crll.1927.156.231
[35] Epstein, DBA, Curves on 2-manifolds and isotopies, Acta Math., 115, 83-107, 1966 · Zbl 0136.44605 · doi:10.1007/BF02392203
[36] Ghys, É., Groups acting on the circle, Enseign. Math. (2), 47, 3, 329-407, 2001 · Zbl 1044.37033
[37] McCarty, GS Jr., Homeotopy groups, Trans. Amer. Math. Soc., 106, 293-304, 1963 · Zbl 0113.17201 · doi:10.1090/S0002-9947-1963-0145531-9
[38] Wada, H., On the space of mappings of a sphere on itself, Ann. of Math. (2), 64, 420-435, 1956 · Zbl 0073.39802 · doi:10.2307/1969593
[39] Wada, H., Note on some mapping spaces, Tôhoku Math. J. (2), 10, 2, 143-145, 1958 · Zbl 0101.15902
[40] Koh, SS, Note on the homotopy properties of the components of the mapping space \(X^{S^p} \), Proc. Amer. Math. Soc., 11, 896-904, 1960 · Zbl 0097.16103
[41] Adams, JF, On the nonexistence of elements of Hopf invariant one, Bull. Amer. Math. Soc., 64, 279-282, 1958 · Zbl 0178.26106 · doi:10.1090/S0002-9904-1958-10225-6
[42] Adams, JF, On the non-existence of elements of Hopf invariant one, Ann. Math. (2), 72, 20-104, 1960 · Zbl 0096.17404 · doi:10.2307/1970147
[43] Hansen, VL, The homotopy problem for the components in the space of maps on the \(n \)-sphere, Quart. J. Math. Oxford Ser. (2), 25, 313-321, 1974 · Zbl 0299.55009 · doi:10.1093/qmath/25.1.313
[44] Alexander, JW, On the deformation of an \(n \)-cell, Proc. Nat. Acad. Sci. U.S.A., 9, 406-407, 1923 · JFM 49.0407.01 · doi:10.1073/pnas.9.12.406
[45] Hamstrom, ME, Homotopy in homeomorphism spaces, \( TOP\) and \(PL \), Bull. Amer. Math. Soc., 80, 207-230, 1974 · Zbl 0277.57004 · doi:10.1090/S0002-9904-1974-13433-6
[46] Hamstrom, ME, The space of homeomorphisms on a torus, Illinois J. Math., 9, 59-65, 1965 · Zbl 0127.13505
[47] Hamstrom, ME, Homotopy properties of the space of homeomorphisms on \(P^2\) and the Klein bottle, Trans. Amer. Math. Soc., 120, 37-45, 1965 · Zbl 0148.17201
[48] Luke, R.; Mason, WK, The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc., 164, 275-285, 1972 · Zbl 0235.57002 · doi:10.1090/S0002-9947-1972-0301693-7
[49] Baer, R., Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, J. Reine Angew. Math., 159, 101-116, 1928 · JFM 54.0602.05 · doi:10.1515/crll.1928.159.101
[50] Hamstrom, ME, Homotopy groups of the space of homeomorphisms on a \(2 \)-manifold, Illinois J. Math., 10, 563-573, 1966 · Zbl 0151.33002 · doi:10.1215/ijm/1256054895
[51] Hamstrom, ME; Dyer, E., Regular mappings and the space of homeomorphisms on a \(2 \)-manifold, Duke Math. J., 25, 521-531, 1958 · Zbl 0116.39903 · doi:10.1215/S0012-7094-58-02546-8
[52] Hamstrom, ME, Some global properties of the space of homeomorphisms on a disc with holes, Duke Math. J., 29, 657-662, 1962 · Zbl 0113.38502 · doi:10.1215/S0012-7094-62-02966-6
[53] Gottlieb, DH, A certain subgroup of the fundamental group, Amer. J. Math., 87, 840-856, 1965 · Zbl 0148.17106 · doi:10.2307/2373248
[54] Hansen, VL, The homotopy groups of a space of maps between oriented closed surfaces, Bull. London Math. Soc., 15, 4, 360-364, 1983 · Zbl 0521.55010 · doi:10.1112/blms/15.4.360
[55] Yamanoshita, T., On the space of self-homotopy equivalences of the projective plane, J. Math. Soc. Japan, 45, 489-494, 1993 · Zbl 0796.55003
[56] Arens, R., A topology for spaces of transformations, Ann. Math., 47, 480-495, 1946 · Zbl 0060.39704 · doi:10.2307/1969087
[57] Hu, ST, Theory of Retracts, 1965, Detroit: Wayne State University, Detroit · Zbl 0145.43003
[58] Thom R., “L’homologie des espaces fonctionnels,” in: Colloque de topologie algébrique (Louvain, 1956). Georges Thone, Liège, Masson, Paris (1957), 29-39. · Zbl 0077.36301
[59] Rutter, JW, Spaces of Homotopy Self-Equivalences, 1997, Berlin: Springer, Berlin · Zbl 0889.55004 · doi:10.1007/BFb0093736
[60] Smith S. B., “The homotopy theory of function spaces: A survey,” in: Homotopy Theory of Function Spaces and Related Topics, Amer. Math. Soc., Providence (2010), 3-39 (Contemp. Math.; vol. 519). · Zbl 1208.55006
[61] Kneser, H., Die Deformationssätze der einfach zusammenhängenden Flächen, Math. Z., 25, 1, 362-372, 1926 · JFM 52.0573.01 · doi:10.1007/BF01283844
[62] Hansen V.L., “The space of self-maps on the \(2 \)-sphere,” in: Groups of Self-Equivalences and Related Topics. (Montreal, PQ, 1988), Springer, Berlin (1990), 40-47 (Lect. Notes Math.; vol. 1425). · Zbl 0703.55005
[63] Gonçalves, DL; Spreafico, M., The fundamental group of the space of maps from a surface into the projective plane, Math. Scand., 104, 2, 161-181, 2009 · Zbl 1197.57002 · doi:10.7146/math.scand.a-15092
[64] Waldhausen, F., On irreducible \(3 \)-manifolds which are sufficiently large, Ann. Math. (2), 87, 56-88, 1968 · Zbl 0157.30603 · doi:10.2307/1970594
[65] Laudenbach, F., Topologie de la dimension trois: homotopie et isotopie, 1974, Paris: Sot. Math. de France, Paris · Zbl 0293.57004
[66] Hatcher, A., Homeomorphisms of sufficiently large \(P^2 \)-irreducible \(3 \)-manifolds, Topology, 15, 4, 343-347, 1976 · Zbl 0335.57004 · doi:10.1016/0040-9383(76)90027-6
[67] Hatcher, A., A proof of the Smale conjecture, \( \operatorname{Diff}(S^3)\simeq O(4) \), Ann. Math. (2), 117, 3, 553-607, 1983 · Zbl 0531.57028 · doi:10.2307/2007035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.