×

Pseudo-Anosov subgroups of general fibered 3-manifold groups. (English) Zbl 1535.57018

Let \(S\) be a finite type orientable surface of negative Euler characteristic and let \(f \colon S \to S\) be a reducible, infinite order mapping class. Let \(\Gamma_f\) denote the fundamental group of the mapping class group \(M_f = S \times [0,1] / (x, 0) \sim (f(x), 1)\) with a basepoint \(z \in M_f\). Let \(S^{z} = S \setminus \{z\}\), then via the Birman Exact Sequence, \(\Gamma_f\) is identified with a subgroup of \(\mathrm{Mod}(S^{z}, z) < \mathrm{Mod}(S^z)\) – the mapping class group of \(S\) with a marked point.
In this paper, the authors show that a subgroup \(G\) of \(\Gamma_f\) is convex cocompact if and only if it is finitely generated and purely pseudo-Anosov. Combined with results of S. Dowdall et al. [Groups Geom. Dyn. 8, No. 4, 1247–1282 (2014; Zbl 1321.57001)] and R. P. Kent IV et al. [J. Reine Angew. Math. 637, 1–21 (2009; Zbl 1190.57014)], this establishes the result for the image of all such fibered 3-manifold groups in the mapping class group.

MSC:

57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
20F65 Geometric group theory
57K30 General topology of 3-manifolds
20E08 Groups acting on trees

References:

[1] Bestvina, Mladen, Undistorted purely pseudo-Anosov groups, J. Reine Angew. Math., 213-227 (2020) · Zbl 1480.20096 · doi:10.1515/crelle-2018-0013
[2] Bestvina, Mladen, Handbook of geometric topology. \( \mathbb{R} \)-trees in topology, geometry, and group theory, 55-91 (2002), North-Holland, Amsterdam · Zbl 0998.57003
[3] Birman, Joan S., Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math., 213-238 (1969) · Zbl 0167.21503 · doi:10.1002/cpa.3160220206
[4] Clay, Matt T., The geometry of right-angled Artin subgroups of mapping class groups, Groups Geom. Dyn., 249-278 (2012) · Zbl 1245.57004 · doi:10.4171/GGD/157
[5] Dowdall, Spencer, Pseudo-Anosov subgroups of fibered 3-manifold groups, Groups Geom. Dyn., 1247-1282 (2014) · Zbl 1321.57001 · doi:10.4171/GGD/302
[6] Durham, Matthew Gentry, Convex cocompactness and stability in mapping class groups, Algebr. Geom. Topol., 2839-2859 (2015) · Zbl 1364.20027 · doi:10.2140/agt.2015.15.2839
[7] A. Fathi, F. Laudenbach, and V. Po\'enaru, Travaux de Thurston sur les surfaces, Soci\'et\'e Math\'ematique de France, Paris, 1991. S\'eminaire Orsay, Reprint of Travaux de Thurston sur les surfaces, Soc.Math.France, Paris, 1979 Ast\'erisque No. 66-67 (1991). · Zbl 0406.00016
[8] Farb, Benson, Convex cocompact subgroups of mapping class groups, Geom. Topol., 91-152 (2002) · Zbl 1021.20034 · doi:10.2140/gt.2002.6.91
[9] Farb, Benson, A primer on mapping class groups, Princeton Mathematical Series, xiv+472 pp. (2012), Princeton University Press, Princeton, NJ · Zbl 1245.57002
[10] Ursula Hamenst\"adt, Word hyperbolic extensions of surface groups, Preprint, math.GT/0505244, 2005. · Zbl 1085.58023
[11] Hamenst\"{a}dt, Ursula, Handbook of Teichm\"{u}ller theory. Vol. I. Geometry of the complex of curves and of Teichm\"{u}ller space, IRMA Lect. Math. Theor. Phys., 447-467 (2007), Eur. Math. Soc., Z\"{u}rich · Zbl 1162.32010 · doi:10.4171/029-1/11
[12] Ivanov, Nikolai V., Subgroups of Teichm\"{u}ller modular groups, Translations of Mathematical Monographs, xii+127 pp. (1992), American Mathematical Society, Providence, RI · Zbl 0776.57001 · doi:10.1090/mmono/115
[13] Keen, Linda, Discontinuous groups and Riemann surfaces. Collars on Riemann surfaces, Ann. of Math. Studies, No. 79, 263-268 (1973), Princeton Univ. Press, Princeton, N.J. · Zbl 0304.30014
[14] Kent, Richard P., IV, In the tradition of Ahlfors-Bers. IV. Subgroups of mapping class groups from the geometrical viewpoint, Contemp. Math., 119-141 (2007), Amer. Math. Soc., Providence, RI · Zbl 1140.30017 · doi:10.1090/conm/432/08306
[15] Kent, Richard P., IV, Shadows of mapping class groups: capturing convex cocompactness, Geom. Funct. Anal., 1270-1325 (2008) · Zbl 1282.20046 · doi:10.1007/s00039-008-0680-9
[16] Kent, Richard P., IV, Uniform convergence in the mapping class group, Ergodic Theory Dynam. Systems, 1177-1195 (2008) · Zbl 1153.57013 · doi:10.1017/S0143385707000818
[17] Kent, Richard P., IV, Trees and mapping class groups, J. Reine Angew. Math., 1-21 (2009) · Zbl 1190.57014 · doi:10.1515/CRELLE.2009.087
[18] Koberda, Thomas, The geometry of purely loxodromic subgroups of right-angled Artin groups, Trans. Amer. Math. Soc., 8179-8208 (2017) · Zbl 1476.20042 · doi:10.1090/tran/6933
[19] Kra, Irwin, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math., 231-270 (1981) · Zbl 0477.32024 · doi:10.1007/BF02392465
[20] Leininger, Christopher J., The universal Cannon-Thurston map and the boundary of the curve complex, Comment. Math. Helv., 769-816 (2011) · Zbl 1248.57003 · doi:10.4171/CMH/240
[21] Masur, Howard A., Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 103-149 (1999) · Zbl 0941.32012 · doi:10.1007/s002220050343
[22] Masur, H. A., Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal., 902-974 (2000) · Zbl 0972.32011 · doi:10.1007/PL00001643
[23] Mj, Mahan, A combination theorem for metric bundles, Geom. Funct. Anal., 1636-1707 (2012) · Zbl 1284.57016 · doi:10.1007/s00039-012-0196-1
[24] Runnels, Ian, Effective generation of right-angled Artin groups in mapping class groups, Geom. Dedicata, 277-294 (2021) · Zbl 1478.57019 · doi:10.1007/s10711-021-00615-0
[25] Bena Tshishiku, Convex cocompact subgroups the Goeritz group, Preprint, 2109.06981, 2021.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.