×

Neighboring mapping points theorem. (English) Zbl 1535.55006

The authors introduce and study a new family of theorems extending the class of Borsuk-Ulam and topological Radon type theorems. The defining idea for this new family is to replace requirements of the form “the image of a subset that is large in some sense is a singleton” with requirements of the milder form “the image of a subset that is large in some sense is a subset that is small in some sense”. This approach covers the case of mappings \(S^m\rightarrow \mathbb{R}^n\) with \(m<n\) and extends to wider classes of spaces.
The main theorems are as follows:
Theorem 4: Let \(f\) be a continuous map of the boundary \(\partial\Delta^n\) of the \(n\)-dimensional complex \(\Delta^n\) to a contractible metric space \(M\). Then a set of spherical \(f\)-neighbors intersects all facets of \(\Delta^n\).
Theorem 6: Let \(C\) be a KKM cover of the \(n\)-sphere \(S^n\), and let \(f:\mathbb{S}^n\rightarrow M\) be a continuous map to a contractible metric space \(M\). Then a set of spherical \(f\)-neighbors intersects all elements of \(C\).
Theorem 19: Let \(X\) be a compact normal space, let \(M\) be a contractible metric space and let \(f:X\rightarrow M\) be a continuous map. Then, for any non-nullhomotopic cover \(C\) of \(X\), a set of spherical \(f\)-neighbors intersects at least \(rk(C)+1\) elements of \(C\). In particular, for any principal cover, a set of spherical \(f\)-neighbors intersects all elements of the cover.
Theorem 36: Let \(A\) be a compact normal space, Let \(C\) be a closed cover of \(A\), and let \([C]\) be the corresponding homotopy class in \([A,N(C)]\), where \(N(C)\) is the nerve. Let \(Z\) be a normal space containing \(A\) as a subspace. If the triple \((Z,A,[C])\) is Eilenberg-Pontryagin, with \(EP\) rank \(rk(Z,A,[C])>0\), then for any metric space \(M\) and any continuous map \(f:A\rightarrow M\) that extends to a continuous map \(Z\rightarrow M\), a set of spherical \(f\)-neighbors intersects at least \(rk(Z,A,[c])+1\) elements of \(C\).
The authors also give an open problem:
Question: Which of the other versions of the topological Helly theorem give sufficient conditions for principal and non-nullhomotopic covers?

MSC:

55M20 Fixed points and coincidences in algebraic topology
55M25 Degree, winding number
55P05 Homotopy extension properties, cofibrations in algebraic topology

References:

[1] 10.1080/00029890.2007.11920420 · Zbl 1183.52015 · doi:10.1080/00029890.2007.11920420
[2] 10.1112/mtk.12010 · Zbl 1443.05188 · doi:10.1112/mtk.12010
[3] 10.1007/BF00181583 · Zbl 0372.52003 · doi:10.1007/BF00181583
[4] 10.1090/noti1415 · Zbl 1358.52022 · doi:10.1090/noti1415
[5] 10.1090/bull/1634 · Zbl 1401.52012 · doi:10.1090/bull/1634
[6] ; Bogatyĭ, S. A., The topological Helly theorem, Fundam. Prikl. Mat., 8, 2, 365 (2002) · Zbl 1028.52004
[7] ; Danzer, Ludwig; Grünbaum, Branko; Klee, Victor, Helly’s theorem and its relatives, Convexity. Proc. Sympos. Pure Math., 7, 101 (1963) · Zbl 0132.17401
[8] 10.1007/BF01874495 · Zbl 0854.52002 · doi:10.1007/BF01874495
[9] 10.1090/S0002-9939-08-09705-0 · Zbl 1179.53003 · doi:10.1090/S0002-9939-08-09705-0
[10] 10.4171/OWR/2015/5 · Zbl 1349.00204 · doi:10.4171/OWR/2015/5
[11] ; Gromov, Mikhael, Homotopical effects of dilatation, J. Differential Geometry, 13, 3, 303 (1978) · Zbl 0427.58010
[12] ; Gromov, Mikhael, Filling Riemannian manifolds, J. Differential Geom., 18, 1, 1 (1983) · Zbl 0515.53037
[13] 10.1090/S0002-9904-1965-11329-5 · Zbl 0137.18002 · doi:10.1090/S0002-9904-1965-11329-5
[14] 0.4213/rm9244 · Zbl 1200.52001 · doi:0.4213/rm9244
[15] 10.1016/j.topol.2011.12.002 · Zbl 1243.52004 · doi:10.1016/j.topol.2011.12.002
[16] 10.1093/imrn/rny220 · Zbl 1473.57017 · doi:10.1093/imrn/rny220
[17] 10.1007/978-3-540-76649-0 · Zbl 1234.05002 · doi:10.1007/978-3-540-76649-0
[18] 10.1090/noti1100 · Zbl 1338.51017 · doi:10.1090/noti1100
[19] 10.1007/s00454-014-9613-6 · Zbl 1322.52006 · doi:10.1007/s00454-014-9613-6
[20] 10.2969/jmsj/00210016 · Zbl 0041.31704 · doi:10.2969/jmsj/00210016
[21] 10.4064/fm-88-1-1-6 · Zbl 0304.55009 · doi:10.4064/fm-88-1-1-6
[22] 10.2140/agt.2016.16.1799 · Zbl 1350.55006 · doi:10.2140/agt.2016.16.1799
[23] 10.1007/s11784-016-0388-7 · Zbl 1383.54050 · doi:10.1007/s11784-016-0388-7
[24] 10.1016/j.topol.2018.01.002 · Zbl 1384.55012 · doi:10.1016/j.topol.2018.01.002
[25] 10.4007/annals.2011.174.1.21 · Zbl 1227.57013 · doi:10.4007/annals.2011.174.1.21
[26] ; Schechter, Eric, Handbook of analysis and its foundations (1997) · Zbl 0943.26001
[27] 10.4213/rm9774 · doi:10.4213/rm9774
[28] 10.4064/fm-87-3-207-211 · Zbl 0314.55010 · doi:10.4064/fm-87-3-207-211
[29] ; Steinlein, H., Borsuk’s antipodal theorem and its generalizations and applications : a survey, Topological methods in nonlinear analysis. Sém. Math. Sup., 95, 166 (1985) · Zbl 0573.55003
[30] 10.12775/TMNA.1993.004 · Zbl 0795.55004 · doi:10.12775/TMNA.1993.004
[31] ; Tikhomirov, V. M., Some questions of the approximation theory (1976)
[32] ; Timan, T. A., Proof of a geometric theorem of Jung, and its analogue in the theory of stochastic processes, Uspehi Mat. Nauk, 20, 3 (123), 213 (1965) · Zbl 0238.60007
[33] 10.1112/jlms/s1-27.4.505 · Zbl 0048.16504 · doi:10.1112/jlms/s1-27.4.505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.