×

Spectral stability of the curlcurl operator via uniform Gaffney inequalities on perturbed electromagnetic cavities. (English) Zbl 1535.35126

Summary: We prove spectral stability results for the \(curl curl\) operator subject to electric boundary conditions on a cavity upon boundary perturbations. The cavities are assumed to be sufficiently smooth but we impose weak restrictions on the strength of the perturbations. The methods are of variational type and are based on two main ingredients: the construction of suitable Piola-type transformations between domains and the proof of uniform Gaffney inequalities obtained by means of uniform a priori \(H^2 \)-estimates for the Poisson problem of the Dirichlet Laplacian. The uniform a priori estimates are proved by using the results of V. Maz’ya and T. Shaposhnikova based on Sobolev multipliers. Connections to boundary homogenization problems are also indicated.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35Q61 Maxwell equations
78M40 Homogenization in optics and electromagnetic theory

References:

[1] J. Arrieta, A. N. Carvalho, G. Losada-Cruz, Dynamics in dumbbell domains Ⅰ. Continuity of the set of equilibria, J. Differ. Equations, 231 (2006), 551-597. https://doi.org/10.1016/j.jde.2006.06.002 · Zbl 1110.35028 · doi:10.1016/j.jde.2006.06.002
[2] J. Arrieta, F. Ferraresso, P. D. Lamberti, Boundary homogenization for a triharmonic intermediate problem, Math. Method. Appl. Sci., 41 (2018), 979-985. https://doi.org/10.1002/mma.4025 · Zbl 1390.35192 · doi:10.1002/mma.4025
[3] J. Arrieta, P. D. Lamberti, Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems, J. Differ. Equations, 263 (2017), 4222-4266. https://doi.org/10.1016/j.jde.2017.05.011 · Zbl 1379.35105 · doi:10.1016/j.jde.2017.05.011
[4] J. Arrieta, M. Villanueva-Pesqueira, Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary, Commun. Pure Appl. Anal., 19 (2020), 1891-1914. https://doi.org/10.3934/cpaa.2020083 · Zbl 1439.35036 · doi:10.3934/cpaa.2020083
[5] M. Sh. Birman, M. Z. Solomyak, The Maxwell operator in domains with a nonsmooth boundary, Sib. Math. J., 28 (1987), 12-24. https://doi.org/10.1007/BF00970204 · Zbl 0655.35067 · doi:10.1007/BF00970204
[6] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7 · Zbl 1220.46002
[7] V. I. Burenkov, Sobolev spaces on domains, Wiesbaden: Vieweg+Teubner Verlag, 1998. https://doi.org/10.1007/978-3-663-11374-4 · Zbl 0893.46024
[8] V. I. Burenkov, P. D Lamberti, Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators, Rev. Mat. Complut., 25 (2012), 435-457. https://doi.org/10.1007/s13163-011-0079-2 · Zbl 1302.35271 · doi:10.1007/s13163-011-0079-2
[9] G. Cardone, C. Perugia, M. Villanueva Pesqueira, Asymptotic behavior of a Bingham flow in thin domains with rough boundary, Integr. Equ. Oper. Theory, 93 (2021), 24. https://doi.org/10.1007/s00020-021-02643-7 · Zbl 1470.35277 · doi:10.1007/s00020-021-02643-7
[10] A. Carvalho, S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numer. Funct. Anal. Optim., 27 (2006), 785-829. https://doi.org/10.1080/01630560600882723 · Zbl 1110.35012 · doi:10.1080/01630560600882723
[11] J. Casado-Díaz, M. Luna-Laynez, F. J. Suárez-Grau, Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall, Math. Models Methods Appl. Sci., 20 (2010), 121-156. https://doi.org/10.1142/S0218202510004179 · Zbl 1194.35302 · doi:10.1142/S0218202510004179
[12] M. Cessenat, Mathematical methods in electromagnetics, River Edge, NJ: World Scientific Publishing Co., Inc., 1996. https://doi.org/10.1142/2938 · Zbl 0917.65099
[13] M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, Math. Method. Appl. Sci., 12 (1990), 365-368. https://doi.org/10.1002/mma.1670120406 · Zbl 0699.35028 · doi:10.1002/mma.1670120406
[14] M. Costabel, A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl., 157 (1991), 527-541. https://doi.org/10.1016/0022-247X(91)90104-8 · Zbl 0738.35095 · doi:10.1016/0022-247X(91)90104-8
[15] M. Costabel, M. Dauge, Maxwell and Lamé eigenvalues on polyhedra, Math. Method. Appl. Sci., 22 (1999), 243-258. https://doi.org/10.1002/(SICI)1099-1476(199902)22:3<243::AID-MMA37>3.0.CO;2-0 · Zbl 0918.35096 · doi:10.1002/(SICI)1099-1476(199902)22:3<243::AID-MMA37>3.0.CO;2-0
[16] M. Costabel, M. Dauge, Maxwell eigenmodes in product domains, In: Maxwell’s equations: analysis and numerics, Berlin, Boston: De Gruyter, 2019,171-198. https://doi.org/10.1515/9783110543612-006 · Zbl 1445.78001
[17] R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Volume 3: spectral theory and applications, Berlin: Springer-Verlag, 1990. · Zbl 0784.73001
[18] F. Ferraresso, On the spectral instability for weak intermediate triharmonic problems, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.8144 · Zbl 1529.35183
[19] F. Ferraresso, P. D. Lamberti, On a Babuška paradox for polyharmonic operators: spectral stability and boundary homogenization for intermediate problems, Integr. Equ. Oper. Theory, 91 (2019), 55. https://doi.org/10.1007/s00020-019-2552-0 · Zbl 1435.31008 · doi:10.1007/s00020-019-2552-0
[20] A. Ferrero, P. D. Lamberti, Spectral stability for a class of fourth order Steklov problems under domain perturbations, Calc. Var., 58 (2019), 33. https://doi.org/10.1007/s00526-018-1481-0 · Zbl 1414.35071 · doi:10.1007/s00526-018-1481-0
[21] A. Ferrero, P. D. Lamberti, Spectral stability of the Steklov problem, arXiv: 2103.04991.
[22] N. Filonov, Principal singularities of the magnetic field component in resonators with a boundary of a given class of smoothness, St. Petersburg Math. J., 9 (1998), 379-390.
[23] V. Girault, P. A. Raviart, Finite element approximation of the Navier-Stokes equations, Berlin-New York: Springer-Verlag, 1979. https://doi.org/10.1007/BFb0063447 · Zbl 0413.65081
[24] G. W. Hanson, A. B. Yakovlev, Operator theory for electromagnetics, New York: Springer-Verlag, 2002. https://doi.org/10.1007/978-1-4757-3679-3 · Zbl 1024.47001
[25] F. Hagemann, F. Hettlich, Application of the second domain derivative in inverse electromagnetic scattering, Inverse Probl., 36 (2020), 125002. https://doi.org/10.1088/1361-6420/abaa31 · Zbl 1454.78023 · doi:10.1088/1361-6420/abaa31
[26] F. Hagemann, T. Arens, T. Betcke, F. Hettlich, Solving inverse electromagnetic scattering problems via domain derivatives, Inverse Probl., 35 (2019), 084005. https://doi.org/10.1088/1361-6420/ab10cb · Zbl 1447.35380 · doi:10.1088/1361-6420/ab10cb
[27] F. Hettlich, The domain derivative of time-harmonic electromagnetic waves at interfaces, Math. Method. Appl. Sci., 35 (2012), 1681-1689. https://doi.org/10.1002/mma.2548 · Zbl 1247.35167 · doi:10.1002/mma.2548
[28] K. Hirakawa, Denki rikigaku, (Japanese), Tokyo: Baifukan, 1973.
[29] S. Jimbo, Hadamard variation for electromagnetic frequencies, In: Geometric properties for parabolic and elliptic PDE’s, Milan: Springer, 2013,179-199. https://doi.org/10.1007/978-88-470-2841-8_12 · Zbl 1302.35267
[30] A. Kirsch, F. Hettlich, The mathematical theory of time-harmonic Maxwell’s equations, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-11086-8 · Zbl 1342.35004
[31] G. Kristensson, I. G. Stratis, N. Wellander, A. N. Yannacopoulos, The exterior Calderón operator for non-spherical objects, SN Partial Differ. Equ. Appl., 1 (2020), 6. https://doi.org/10.1007/s42985-019-0005-x · Zbl 1455.35253 · doi:10.1007/s42985-019-0005-x
[32] P. D. Lamberti, I. G. Stratis, On an interior Calderón operator and a related Steklov eigenproblem for Maxwell’s equations, SIAM J. Math. Anal., 52 (2020), 4140-4160. https://doi.org/10.1137/19M1251370 · Zbl 1448.35498 · doi:10.1137/19M1251370
[33] P. D. Lamberti, M. Zaccaron, Shape sensitivity analysis for electromagnetic cavities, Math. Method. Appl. Sci., 44 (2021), 10477-10500. https://doi.org/10.1002/mma.7423 · Zbl 1473.35538 · doi:10.1002/mma.7423
[34] V. G. Maz’ya, T. O. Shaposhnikova, Theory of Sobolev multipliers, Berlin: Springer-Verlag, 2009. https://doi.org/10.1007/978-3-540-69492-2 · Zbl 1157.46001
[35] P. Monk, Finite element methods for Maxwell’s equations, New York: Oxford University Press, 2003. https://doi.org/10.1093/acprof:oso/9780198508885.001.0001 · Zbl 1024.78009
[36] J. C. Nédeléc, Acoustic and electromagnetic equations, New York: Springer-Verlag, 2001. https://doi.org/10.1007/978-1-4757-4393-7 · Zbl 0981.35002
[37] D. Pauly, On the Maxwell constants in 3D, Math. Method. Appl. Sci., 40 (2017), 435-447. https://doi.org/10.1002/mma.3324 · Zbl 1357.35012 · doi:10.1002/mma.3324
[38] A. Prokhorov, N. Filonov, Regularity of electromagnetic fields in convex domains, J. Math. Sci., 210 (2015), 793-813. https://doi.org/10.1007/s10958-015-2591-2 · Zbl 1360.35265 · doi:10.1007/s10958-015-2591-2
[39] G. F. Roach, I. G. Stratis, A. N. Yannacopoulos, Mathematical analysis of deterministic and stochastic problems in complex media electromagnetics, Princeton, NJ: Princeton University Press, 2012. https://doi.org/10.23943/princeton/9780691142173.001.0001 · Zbl 1250.78001
[40] G. M. Vainikko, Regular convergence of operators and the approximate solution of equations, J. Math. Sci., 15 (1981), 675-705. https://doi.org/10.1007/BF01377042 · Zbl 0582.65046 · doi:10.1007/BF01377042
[41] C. Weber, Regularity theorems for Maxwell’s equations, Math. Method. Appl. Sci., 3 (1981), 523-536. https://doi.org/10.1002/mma.1670030137 · Zbl 0477.35020 · doi:10.1002/mma.1670030137
[42] Ch. Weber, A local compactness theorem for Maxwell’s equations, Math. Method. Appl. Sci., 2 (1980), 12-25. https://doi.org/10.1002/mma.1670020103 · Zbl 0432.35032 · doi:10.1002/mma.1670020103
[43] H. M. Yin, An eigenvalue problem for curlcurl operators, Can. Appl. Math. Q., 20 (2012), 421-434. · Zbl 1328.35124
[44] Z. Zhang, Comparison results for eigenvalues of curl curl operator and Stokes operator, Z. Angew. Math. Phys., 69 (2018), 104. https://doi.org/10.1007/s00033-018-0997-7 · Zbl 1401.35227 · doi:10.1007/s00033-018-0997-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.