×

Affinizations, R-matrices and reflection functors. (English) Zbl 1535.18026

Affinizations and \(\boldsymbol{R}\)-matrices are one of the most powerful tools in the representation theory of quiver Hecke algebras and affine quantum groups. \(\boldsymbol{R}\)-matrices are distinguished homomorphisms between tensor products of modules, which measure the commutativity of tensor products. Affinizations of modules help \(\boldsymbol{R}\)-matrices to play their role. The study on affinizations and \(\boldsymbol{R}\)-matrices gives rise to the integer invariants \(\Lambda\), \(\widetilde{\Lambda}\)and \(\mathfrak{d}\), which have been used crucially in deriving several remarkable results including monoidal categorification of cluster algebras [S.-J. Kang et al., Compos. Math. 151, No. 2, 377–396 (2015; Zbl 1366.17014); J. Am. Math. Soc. 31, No. 2, 349–426 (2018; Zbl 1460.13039); M. Kashiwara et al., Adv. Math. 328, 959–1009 (2018; Zbl 1437.17005); M. Kashiwara and E. Park, J. Eur. Math. Soc. (JEMS) 20, No. 5, 1161–1193 (2018; Zbl 1475.16024)]. In the representation theory of quantum affine algebras, \(\boldsymbol{R}\)-matricesalready occupy a significant position. The generalized Schur-Weyl duality functor relates the \(\boldsymbol{R}\)-matricesin quiver Hecke algebras and the ones in quantum affine algebras in a natural way, and they enjoy very similar properties in their own categories [V. Chari and A. Pressley, A guide to quantum groups. Cambridge: Cambridge University Press (1994; Zbl 0839.17009); P. I. Etingof and A. A. Moura, Represent. Theory 7, 346–373 (2003; Zbl 1066.17005); M. Kashiwara, Duke Math. J. 112, No. 1, 117–195 (2002; Zbl 1033.17017); S.-J. Kang et al., Invent. Math. 211, No. 2, 591–685 (2018; Zbl 1407.81108); S.-J. Kang et al., Invent. Math. 216, No. 2, 597–599 (2019; Zbl 1447.81140); M. Kashiwara et al., Compos. Math. 156, No. 5, 1039–1077 (2020; Zbl 1497.17020), M. Kashiwara et al., Invent. Math. 236, No. 2, 837–924 (2024; Zbl 07828037)].
This paper establishes the theory of affinization and \(\boldsymbol{R}\)-matrices in the language of pro-objects, and as an application, constructs reflection functors over the localizations of quiver Hecke algebras of an arbitrary finite type. The main results of the paper goes as follows.
The first main result
is to study the notion of affinization and \(\boldsymbol{R}\)-matrices in the language of pro-objects. The authors define affinizations and \(\boldsymbol{R}\)-matrices in the categories with certain conditions, investigating their properties. Key properties appearing in quiver Hecke algebras and quantum affine algebras are rediscovered in a purely categorical setting. The authors next introduce a duality datum at the category level, constructing a generalized Schur-Weyl duality in the category setting after [M. Kashiwara et al., Invent. Math. 236, No. 2, 837–924 (2024; Zbl 07828037)].
The second main result
is to apply the generalized Schur-Weyl duality to the localized category \(\widetilde{\mathcal{C}^{\ast}}_{s_{i},w_{0}}\)of a quiver Hecke algebra of arbitrary finite type. As a result, for any \(i\in I\), the authors obtain an equivalence of monoidal categories \[ \mathcal{S}_{i}:\widetilde{\mathcal{C}}_{s_{i},w_{0}}\overset{\sim }{\rightarrow}\widetilde{\mathcal{C}^{\ast}}_{s_{i},w_{0}} \] which categorifies the braid group action [G. Lusztig, Introduction to quantum groups. Boston, MA: Birkhäuser (1993; Zbl 0788.17010), Chapter 37] and the Saito reflection \(\sigma_{i}\)[Y. Saito, Publ. Res. Inst. Math. Sci. 30, No. 2, 209–232 (1994; Zbl 0812.17013)].

MSC:

18M05 Monoidal categories, symmetric monoidal categories
16D90 Module categories in associative algebras
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Chari, V.; Pressley, A., A Guide to Quantum Groups, 1994, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0839.17009
[2] Chriss, N.; Ginzburg, V., Representation Theory and Complex Geometry, 1997, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0879.22001
[3] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Mathematical Surveys and Monographs, vol. 205, 2015, American Mathematical Society: American Mathematical Society Providence, RI, xvi+343 pp. · Zbl 1365.18001
[4] Etingof, P.; Moura, A. A., Elliptic central characters and blocks of finite dimensional representations of quantum affine algebras, Represent. Theory, 7, 346-373, 2003 · Zbl 1066.17005
[5] Kashiwara, M., On level zero representations of quantum affine algebras, Duke Math. J., 112, 117-175, 2002 · Zbl 1033.17017
[6] Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S-j., Simplicity of heads and socles of tensor products, Compos. Math., 151, 2, 377-396, 2015 · Zbl 1366.17014
[7] Kang, S.-J.; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, Invent. Math., 211, 591-685, 2018 · Zbl 1407.81108
[8] Kang, S.-J.; Kashiwara, M.; Kim, M., Monoidal categorification of cluster algebras, J. Am. Math. Soc., 31, 2, 349-426, 2018 · Zbl 1460.13039
[9] Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Monoidal categories associated with strata of flag manifolds, Adv. Math., 328, 959-1009, 2018 · Zbl 1437.17005
[10] Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Monoidal categorification and quantum affine algebras, Compos. Math., 156, 5, 1039-1077, 2020 · Zbl 1497.17020
[11] Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Localizations for quiver Hecke algebras, Pure Appl. Math. Q., 17, 4, 1465-1548, 2021 · Zbl 1495.18020
[12] Kashiwara, M.; Kim, M.; Oh, S-j.; Park, E., Localizations for quiver Hecke algebras II, Proc. Lond. Math. Soc. (4), 127, 1134-1184, 2023 · Zbl 1540.18023
[13] Kashiwara, M.; Park, E., Affinizations and R-matrices for quiver Hecke algebras, J. Eur. Math. Soc., 20, 1161-1193, 2018 · Zbl 1475.16024
[14] Kashiwara, M.; Schapira, P., Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 332, 2006, Springer-Verlag: Springer-Verlag Berlin · Zbl 1118.18001
[15] Kato, S., Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 3, 619-663, 2014 · Zbl 1292.17012
[16] Kato, S., On the monoidality of Saito reflection functors, Int. Math. Res. Not., 22, 8600-8623, 2020 · Zbl 1479.16010
[17] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 309-347, 2009 · Zbl 1188.81117
[18] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups II, Trans. Am. Math. Soc., 363, 2685-2700, 2011 · Zbl 1214.81113
[19] Lauda, A.; Vazirani, M., Crystals from categorified quantum groups, Adv. Math., 228, 2, 803-861, 2011 · Zbl 1246.17017
[20] Lusztig, G., Introduction to Quantum Groups, Progr. Math., vol. 110, 1993, Birkhäuser · Zbl 0788.17010
[21] McNamara, P. J., Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: finite type, J. Reine Angew. Math., 707, 103-124, 2015 · Zbl 1378.17018
[22] McNamara, P. J., Monoidality of Kato’s reflection functors
[23] Rouquier, R., 2-Kac-Moody algebras
[24] Saito, Y., PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci., 30, 2, 209-232, 1994 · Zbl 0812.17013
[25] Tingley, P.; Webster, B., Mirković-Vilonen polytopes and Khovanov-Lauda-Rouquier algebras, Compos. Math., 152, 8, 1648-1696, 2016 · Zbl 1425.17022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.