×

Constructing illoyal algebra-valued models of set theory. (English) Zbl 1535.03254

Summary: An algebra-valued model of set theory is called loyal to its algebra if the model and its algebra have the same propositional logic; it is called faithful if all elements of the algebra are truth values of a sentence of the language of set theory in the model. We observe that non-trivial automorphisms of the algebra result in models that are not faithful and apply this to construct three classes of illoyal models: tail stretches, transposition twists, and maximal twists.

MSC:

03E70 Nonclassical and second-order set theories
03E40 Other aspects of forcing and Boolean-valued models
03B55 Intermediate logics
03B20 Subsystems of classical logic (including intuitionistic logic)
03C90 Nonclassical models (Boolean-valued, sheaf, etc.)

References:

[1] Bell, J.L.: Set theory, Boolean-valued models and independence proofs, Oxford Logic Guides, vol. 47, third edn. Oxford University Press (2005) · Zbl 1065.03034
[2] Bezhanishvili, N., de Jongh, D.: Intuitionistic logic (2006). Lecture Notes, ILLC Publications PP-2006-25
[3] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001) · Zbl 0988.03006
[4] Chakraborty, M.K., Tarafder, S.: A paraconsistent logic obtained from an algebra-valued model of set theory. In: J.Y. Béziau, M.K. Chakraborty, S. Dutta (eds.) New Directions in Paraconsistent Logic, 5th WCP, Kolkata, India, February 2014, Springer Proceedings in Mathematics & Statistics, vol. 152, pp. 165-183. Springer-Verlag (2016) · Zbl 1423.03105
[5] de Jongh, D.; Verbrugge, R.; Visser, A., Intermediate logics and the de Jongh property, Arch. Math. Log., 50, 1-2, 197-213 (2011) · Zbl 1233.03033 · doi:10.1007/s00153-010-0209-4
[6] de Jongh, D.H.J., Visser, A.: Embeddings of Heyting algebras. In: W. Hodges, M. Hyland, C. Steinhorn, J. Truss (eds.) Logic: from foundations to applications. Proceedings of the Logic Colloquium held as a part of the European Meeting of the Association for Symbolic Logic at the University of Keele, Staffordshire, July 20-29, 1993, Oxford Science Publications, pp. 187-213. Oxford University Press (1996) · Zbl 0857.03041
[7] Dummett, M., A propositional calculus with denumerable matrix, J. Symb. Log., 24, 97-106 (1959) · Zbl 0089.24307 · doi:10.2307/2964753
[8] Dunn, J.M.: Generalized ortho negation. In: H. Wansing (ed.) Negation. A Notion in Focus, Perspektiven der Analytischen Philosophie, vol. 7, pp. 3-26. De Gruyter (1995) · Zbl 0979.03027
[9] Fourman, M.P., Scott, D.S.: Sheaves and logic. In: M.P. Fourman, C.J. Mulvey, D.S. Scott (eds.) Applications of sheaves. Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra and Analysis held at the University of Durham, Durham, July 9-21, 1977, Lecture Notes in Mathematics, vol. 753, pp. 302-401. Springer-Verlag (1979) · Zbl 0407.00001
[10] Grayson, R.J.: Heyting-valued models for intuitionistic set theory. In: M.P. Fourman, C.J. Mulvey, D.S. Scott (eds.) Applications of sheaves, Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra and Analysis held at the University of Durham, Durham, July 9-21, 1977, Lecture Notes in Mathematics, vol. 753, pp. 402-414. Springer-Verlag (1979) · Zbl 0419.03033
[11] Horn, A., Logic with truth values in a linearly ordered Heyting algebra, J. Symb. Log., 34, 395-408 (1969) · Zbl 0181.29904 · doi:10.2307/2270905
[12] Jockwich Martínez, S.; Venturi, G., On negation for non-classical set theories, J. Philos. Log., 50, 549-570 (2021) · Zbl 1535.03253 · doi:10.1007/s10992-020-09576-3
[13] Johnstone, P.T.: Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press (1982) · Zbl 0499.54001
[14] Löwe, B.; Tarafder, S., Generalized algebra-valued models of set theory, Rev. Symb. Log., 8, 1, 192-205 (2015) · Zbl 1375.03066 · doi:10.1017/S175502031400046X
[15] Ozawa, M., Transfer principle in quantum set theory, J. Symb. Log., 72, 2, 625-648 (2007) · Zbl 1124.03045 · doi:10.2178/jsl/1185803627
[16] Ozawa, M.: Orthomodular-valued models for quantum set theory (2009). Preprint, arXiv:0908.0367 · Zbl 1421.03026
[17] Paßmann, R.: Loyalty and faithfulness of model constructions for constructive set theory. Master’s thesis, Universiteit van Amsterdam (2018). ILLC Publications MoL-2018-03
[18] Paßmann, R.: De Jongh’s theorem for intuitionistic Zermelo-Fraenkel set theory. In: M. Fernández, A. Muscholl (eds.) 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain, Leibniz International Proceedings in Informatics, vol. 152, pp. 33.1-33.16. Leibniz-Zentrum für Informatik (2020) · Zbl 07650846
[19] von Plato, J., Skolem’s discovery of Gödel-Dummett logic, Stud. Log., 73, 1, 153-157 (2003) · Zbl 1015.03005 · doi:10.1023/A:1022997524909
[20] Skolem, T.: Om konstitutionen av den identiske kalkuls grupper. In: C. Størmer (ed.) Den Tredje Skandinaviske Matematikerkongres i Kristiania 1913. Beretning, pp. 149-163. Aschehoug (1915)
[21] Smorynski, C.A.: Applications of Kripke models. In: A.S. Troelstra (ed.) Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics, vol. 344. Springer-Verlag (1973) · Zbl 0275.02025
[22] Takeuti, G.; Titani, S., Fuzzy logic and fuzzy set theory, Arch. Math. Log., 32, 1, 1-32 (1992) · Zbl 0786.03039 · doi:10.1007/BF01270392
[23] Tarafder, S.: Ordinals in an algebra-valued model of a paraconsistent set theory. In: M. Banerjee, S.N. Krishna (eds.) Logic and Its Applications, 6th International Conference, ICLA 2015, Mumbai, India, January 8-10, 2015, Proceedings, Lecture Notes in Computer Science, vol. 8923, pp. 195-206. Springer-Verlag (2015) · Zbl 1304.03077
[24] Tarafder, S., Venturi, G.: Independence proofs in non-classical set theories. Rev. Symb. Log. (in press) · Zbl 07786924
[25] Titani, S., A lattice-valued set theory, Arch. Math. Log., 38, 6, 395-421 (1999) · Zbl 0936.03048 · doi:10.1007/s001530050134
[26] Titani, S.; Kozawa, H., Quantum set theory, Int. J. Theor. Phys., 42, 11, 2575-2602 (2003) · Zbl 1044.81010 · doi:10.1023/B:IJTP.0000005977.55748.e4
[27] van Douwen, EK; Monk, JD; Rubin, M., Some questions about Boolean algebras, Algebra Univers., 11, 220-243 (1980) · Zbl 0451.06014 · doi:10.1007/BF02483101
[28] Vopěnka, P.: The limits of sheaves and applications on constructions of models. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 13, 189-192 (1965) · Zbl 0147.25803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.