×

A model-theoretic note on the Freiman-Ruzsa theorem. (English) Zbl 1535.03189

Summary: A non-quantitative version of the Freiman-Ruzsa theorem is obtained for finite stable sets with small tripling in arbitrary groups, as well as for (finite) weakly normal subsets in abelian groups.

MSC:

03C45 Classification theory, stability, and related concepts in model theory
03C60 Model-theoretic algebra
11B30 Arithmetic combinatorics; higher degree uniformity

References:

[1] Casanovas, E., Simple theories and hyperimaginaries (2011), Logic, Chicago: IL; Cambridge University Press, Cambridge, Logic, Chicago · Zbl 1243.03045 · doi:10.1017/CBO9781139003728
[2] Conant, G.; Pillay, A.; Terry, C., A group version of stable regularity, Math. Proc. Camb. Philos. Soc., 168, 2, 405-413 (2020) · Zbl 1539.03116 · doi:10.1017/S0305004118000798
[3] Conant, G., On finite sets of small tripling or small alternation in arbitrary groups, Comb. Probab. Comput., 29, 807-829 (2020) · Zbl 1504.20028 · doi:10.1017/S0963548320000176
[4] Conant, G., Quantitative structure of stable sets in arbitrary finite groups, Proc. Am. Math. Soc. (2021) · Zbl 1496.03143 · doi:10.1090/proc/15479
[5] Even-Zohar, C.; Lovett, S., The Freiman-Ruzsa theorem over finite fields, J. Combin. Theory Ser. A, 125, 333-341 (2014) · Zbl 1302.11007 · doi:10.1016/j.jcta.2014.03.011
[6] Freĭman, G. A.: Foundations of a structural theory of set addition (Translated from the Russian), Transl. Math. Monographs, 37, AMS, Providence, RI (1973) · Zbl 0271.10044
[7] Green, B., Ruzsa, I.Z.: Freĭman’s theorem in an arbitrary abelian group. J. Lond. Math. Soc. 75, 163-175 (2007) · Zbl 1133.11058
[8] Green, B., Sanders, T.: A quantitative version of the idempotent theorem in harmonic analysis, Ann. Math. (2) 168, 1025-1054 (2008) · Zbl 1170.43003
[9] Hrushovski, E., Pillay, A.: Weakly normal groups, in Logic Colloquium 85, Stud. Logic Found. Math. 122, North-Holland, Amsterdam, 233-244 (1987) · Zbl 0636.03028
[10] Hrushovski, E.; Pillay, A., Groups definable in local fields and pseudo-finite fields, Israel J. Math., 85, 203-262 (1994) · Zbl 0804.03024 · doi:10.1007/BF02758643
[11] Hrushovski, E., Stable group theory and approximate subgroups, J. Am. Math. Soc., 25, 189-243 (2012) · Zbl 1259.03049 · doi:10.1090/S0894-0347-2011-00708-X
[12] Keisler, HJ, Measures and forking, Ann. Pure Appl. Logic, 34, 119-169 (1987) · Zbl 0633.03024 · doi:10.1016/0168-0072(87)90069-8
[13] Palacín, D., On compactifications and product-free sets, to appear in, J. Lond. Math. Soc., 101, 1, 156-174 (2020) · Zbl 1481.03019 · doi:10.1112/jlms.12263
[14] Pillay, A.: Geometric stability theory, Oxford Logic Guides 32. The Clarendon Press, Oxford University Press, Oxford Science Pub, New York (1996)
[15] Pillay, A., Model-theoretic consequences of a theorem of Campana and Fujiki, Fund. Math., 174, 187-192 (2002) · Zbl 1004.03032 · doi:10.4064/fm174-2-3
[16] Ruzsa, IZ, Generalized arithmetical progressions and sumsets, Acta Math. Hungar., 65, 379-388 (1994) · Zbl 0816.11008 · doi:10.1007/BF01876039
[17] Ruzsa, I.Z.: An analog of Freĭman’s theorem in groups. Astérisque 258, 323-326 (1999) · Zbl 0946.11007
[18] Sanders, T., On the Bogolyubov-Ruzsa lemma, Anal. PDE, 5, 627-655 (2012) · Zbl 1320.11009 · doi:10.2140/apde.2012.5.627
[19] Sanders, T., The coset and stability rings, Online J. Anal. Comb., 15, 1 (2020) · Zbl 1441.11026
[20] Schoen, T.: Near optimal bounds in Freĭman’s theorem. Duke Math. J. 158, 1-12 (2011) · Zbl 1242.11074
[21] Sisask, O.: Convolutions of sets with bounded VC-dimension are uniformly continuous, Discrete Anal. 2021:1 · Zbl 1498.11043
[22] Starchenko, S.: NIP, Keisler measures and combinatorics, in Séminaire Bourbaki, Astérisque 390, 303-334 (2017) · Zbl 1373.03057
[23] Tao, T.; Vu, V., Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1127.11002 · doi:10.1017/CBO9780511755149
[24] Tent, K.; Ziegler, M., A course in model theory (2012), Logic, La Jolla: CA; Cambridge University Press, Cambridge, Logic, La Jolla · Zbl 1245.03002 · doi:10.1017/CBO9781139015417
[25] Terry, C.; Wolf, J., Quantitative structure of stable sets in finite abelian groups, Trans. Am. Math. Soc., 373, 3885-3903 (2020) · Zbl 1477.11023 · doi:10.1090/tran/8056
[26] Terry, C.; Wolf, J., Stable arithmetic regularity lemma in the finite-field model, Bull. London Math. Soc., 51, 70-88 (2019) · Zbl 1462.11015 · doi:10.1112/blms.12211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.