×

Finite-time stability of switched stochastic systems with incremental quadratic constraints. (English) Zbl 1534.93399

Summary: The main purpose of this paper is to study the stability problem of switched systems with incremental quadratic constraints. Compared with the switched systems with Lipschitz condition, the nonlinear switching system discussed in this paper are more general. Based on the mode-dependent Lyapunov function and the linear matrix inequalities method, the sufficient conditions of the stability in probability and finite-time stability of nonlinear switched systems with incremental quadratic constraints are derived. In our main results, the conditions on \(\mathcal{L}V\) are relaxed and the coefficients can be positive or negative, so the subsystem may be stable or unstable, respectively. Finally, we give a specific example to show the effectiveness of our results.

MSC:

93D40 Finite-time stability
93E15 Stochastic stability in control theory
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
Full Text: DOI

References:

[1] Agarwal, N., Stabilizing graph-dependent linear switched systems with unstable subsystems, European Journal of Control, 53, 20-28 (2020) · Zbl 1447.93248 · doi:10.1016/j.ejcon.2019.10.005
[2] Amato, F.; Tommasi, G.; Pironti, A., Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica, 49, 8, 2546-2550 (2013) · Zbl 1364.93737 · doi:10.1016/j.automatica.2013.04.004
[3] Ambrosino, R.; Calabrese, F.; Cosentino, C.; Tommasi, G., Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Transactions on Automatic Control, 54, 4, 861-865 (2009) · Zbl 1367.93425 · doi:10.1109/TAC.2008.2010965
[4] Appleby, JA; Mao, X.; Rodkina, A., Stabilization and destabilization of nonlinear differential equations by noise, IEEE Transactions on Automatic Control, 53, 3, 683-691 (2008) · Zbl 1367.93692 · doi:10.1109/TAC.2008.919255
[5] Arnold, L., Stochastic differential equations: theory and applications (1974), New York: Wiley, New York · Zbl 0278.60039
[6] Barbata, A.; Zasadzinski, M.; Ali, H., Exponential observer for a class of one-sided Lipschitz stochastic nonlinear systems, IEEE Transactions on Automatic Control, 60, 1, 259-264 (2015) · Zbl 1360.93114 · doi:10.1109/TAC.2014.2325391
[7] Benjelloun, K.; Boukas, EK, Mean square stability of linear time-delay system with Markovian jumping parameters, IEEE Transactions on Automatic Control, 43, 10, 1456-1460 (1998) · Zbl 0986.93071 · doi:10.1109/TAC.1998.720507
[8] Bhat, SP; Bernstein, DS, Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[9] Bolzern, P.; Colaneri, P.; Nicolao, GD, On almost sure stability of continuous-time Markov jump linear systems, Automatica, 42, 6, 983-988 (2006) · Zbl 1116.93049 · doi:10.1016/j.automatica.2006.02.007
[10] Chen, W.; Jiao, LC, Finite-time stability theorem of stochastic nonlinear systems, Automatica, 46, 12, 2105-2108 (2010) · Zbl 1401.93213 · doi:10.1016/j.automatica.2010.08.009
[11] Chen, G.; Yang, Y.; Li, J., Finite time stability of a class of hybrid dynamical systems, IET Control Theory and Applications, 6, 1, 8-13 (2012) · doi:10.1049/iet-cta.2010.0259
[12] \(D^{\prime }\) Alto L. 2004 Incremental Quadratic Stability \([Master^{\prime }\) s thesis], Purdue University.
[13] Hao, Y.; Bin, J., A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes, Nonlinear Analysis: Hybrid Systems, 13, 45C60 (2014) · Zbl 1292.93116
[14] Huang, X.; Lin, W.; Yang, B., Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, 41, 881-888 (2005) · Zbl 1098.93032 · doi:10.1016/j.automatica.2004.11.036
[15] Huang, J.; Yang, L.; Trinh, H., Robust control for incremental quadratic constrained nonlinear time-delay systems subject to actuator saturation, Applied Mathematics and Computation, 405, 126-271 (2021) · Zbl 1510.93270 · doi:10.1016/j.amc.2021.126271
[16] Huang, J.; Yu, L.; Chen, L., Control design for stochastic one-sided Lipschitz differential inclusion system with time delay, International Journal of Systems Science, 49, 14, 2923-2939 (2018) · Zbl 1482.93588 · doi:10.1080/00207721.2018.1528406
[17] Khalil, HK, Nonlinear systems (2002), New Jersey: Prentice-Hall, New Jersey · Zbl 1003.34002
[18] Li, Y.; Sanfelice, R., Finite time stability of sets for hybrid dynamical systems, Automatica, 100, 200-211 (2019) · Zbl 1411.93134 · doi:10.1016/j.automatica.2018.10.016
[19] Liu J. and Huang Q. 2019 Absolute stability for a class of switched delay system with stable and unstable ssubsystems, in: The 31st Chinese Control and Decision Conference, 2: 213-218.
[20] Moulay, E.; Dambrine, M.; Yeganefar, N.; Perruquetti, W., Finite time stability and stabilization of time-delayed systems, Systems and Control Letters, 57, 561-566 (2008) · Zbl 1140.93447 · doi:10.1016/j.sysconle.2007.12.002
[21] Peter D. 2006 An Overview of Finite-Time Stability, Birkhguser Boston eBooks.
[22] Qu, Y.; Xu, S.; Song, C.; Ma, Q.; Chu, Y.; Zou, Y., Finite-time dynamic coverage for mobile sensor networks in unknown environments using neural networks, Journal of the Franklin Institute, 351, 4838-4849 (2014) · Zbl 1395.93066 · doi:10.1016/j.jfranklin.2014.05.011
[23] Saberi, M.; Zamani, I., Stability and stabilisation of switched time-varying delay systems: a multiple discontinuous Lyapunov function approach, International Journal of Systems Science, 51, 2378-2409 (2020) · Zbl 1483.93540 · doi:10.1080/00207721.2020.1794081
[24] Tian, Y.; Cai, Y.; Sun, Y., Stability of switched nonlinear time-delay systems with stable and unstable subsystems, Nonlinear Analysis: Hybrid Systems, 24, 58-68 (2017) · Zbl 1377.93144
[25] Wang, B.; Zhu, Q., Stability analysis of markov switched stochastic differential equations with both stable and unstable subsystems, Systems and Control Letters, 105, 55-61 (2017) · Zbl 1372.93215 · doi:10.1016/j.sysconle.2017.05.002
[26] Wang, B.; Zhu, Q., Stability analysis of semi-Markov switched stochastic systems, Automatica, 94, 72-80 (2018) · Zbl 1400.93325 · doi:10.1016/j.automatica.2018.04.016
[27] Wang, D.; Song, F.; Zhang, W.; Hu, Z., Consensus control of nonlinear multiagent systems with incremental quadratic constraints and time delays, Mathematical Problems in Engineering, 2020, 1-11 (2020) · Zbl 1459.93019
[28] Wang, X.; Li, S.; Shi, P., Distributed finite-time containment control for double-integrator multiagent systems, IEEE Trans, Cybernetics, 44, 1518-1528 (2014)
[29] Xie, D.; Zhang, H.; Zhang, H.; Wang, B., Exponential stability of switched systems with unstable subsystems: a mode-dependent average dwell time approach, Circuits Systems Signal Process, 32, 3093-3105 (2013) · doi:10.1007/s00034-013-9601-8
[30] Zhai, G.; Hu, B.; Yasuda, K., Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach, International Journal of Systems Science, 32, 1055-1061 (2010) · Zbl 1022.93043 · doi:10.1080/00207720116692
[31] Zhang, J.; Wang, Y.; Xiao, J.; Shen, Y., Stability analysis of switched positive linear systems with stable and unstable subsystems, International Journal of Systems Science, 45, 2458-2465 (2014) · Zbl 1317.93223 · doi:10.1080/00207721.2013.770938
[32] Zhang, M.; Huang, J.; Zhang, Y., Stochastic stability and stabilization for stochastic differential semi-Markov jump systems with incremental quadratic constraints, Journal of Robust and Nonlinear Control (2021) · Zbl 1527.93466 · doi:10.1002/rnc.5643
[33] Zhang, W.; Zhao, Y.; Abbaszadeh, M.; Ji, M., Full-order and reduced-order exponential observer for discrete-time nonlinear systems with incremental quadratic constraints, Journal of Dynamic Systems, Measurement, and Control, 141, 4 (2019) · doi:10.1115/1.4041712
[34] Zhao, Y.; Zhang, W., Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50, 12, 3122-3135 (2018)
[35] Zheng, Q.; Zhang, H.; Zheng, D., Stability and asynchronous stabilization for a class of discrete-time switched nonlinear systems with stable and unstable subsystems, Journal of Control Automation and Systems, 15, 986-994 (2017) · doi:10.1007/s12555-016-0301-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.