×

Modeling the interplay of oscillatory synchronization and aggregation via cell-cell adhesion. (English) Zbl 1534.92025

Summary: We present a model of systems of cells with intracellular oscillators (‘clocks’). This is motivated by examples from developmental biology and from the behavior of organisms on the threshold to multicellularity. Cells undergo random motion and adhere to each other. The adhesion strength between neighbors depends on their clock phases in addition to a constant baseline strength. The oscillators are linked via Kuramoto-type local interactions. The model is an advection-diffusion partial differential equation with nonlocal advection terms. We demonstrate that synchronized states correspond to Dirac-delta measure solutions of a weak version of the equation. To analyze the complex interplay of aggregation and synchronization, we then perform a linear stability analysis of the incoherent, spatially uniform state. This lets us classify possibly emerging patterns depending on model parameters. Combining these results with numerical simulations, we determine a range of possible far-from equilibrium patterns when baseline adhesion strength is zero: There is aggregation into separate synchronized clusters with or without global synchrony; global synchronization without aggregation; or unexpectedly a ‘phase wave’ pattern characterized by spatial gradients of clock phases. A 2D lattice-gas cellular automaton model confirms and illustrates these results.
{© 2024 IOP Publishing Ltd & London Mathematical Society}

MSC:

92C37 Cell biology
92C15 Developmental biology, pattern formation
35B36 Pattern formations in context of PDEs
35K58 Semilinear parabolic equations

Software:

DLMF; FreeFem++

References:

[1] Arias Del Angel, J. A.; Nanjundiah, V.; Benítez, M.; Newman, S. A., Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity, EvoDevo, 11, 1-18 (2020) · doi:10.1186/s13227-020-00165-8
[2] Armstrong, N. J.; Painter, K. J.; Sherratt, J. A., A continuum approach to modelling cell-cell adhesion, J. Theor. Biol., 243, 98-113 (2006) · Zbl 1447.92113 · doi:10.1016/j.jtbi.2006.05.030
[3] Barciś, A.; Bettstetter, C., Sandsbots: robots that sync and swarm, IEEE Access, 8, 218752-64 (2020) · doi:10.1109/ACCESS.2020.3041393
[4] Baumann, F.; Lorenz-Spreen, P.; Sokolov, I. M.; Starnini, M., Modeling echo chambers and polarization dynamics in social networks, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.048301
[5] Bhat, R.; Glimm, T.; Linde-Medina, M.; Cui, C.; Newman, S. A., Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton, Mech. Dev., 156, 41-54 (2019) · doi:10.1016/j.mod.2019.03.001
[6] Boccaletti, S.; Pisarchik, A. N.; Genio, C. I D.; Amann, A., Synchronization: From Coupled Systems to Complex Networks (2018), Cambridge University Press · Zbl 1380.90001
[7] Bonner, J. T., The Social Amoebae (2008), Princeton University Press
[8] Bussemaker, H. J., Analysis of a pattern-forming lattice-gas automaton: mean-field theory and beyond, Phys. Rev. E, 53, 1644 (1996) · doi:10.1103/PhysRevE.53.1644
[9] Buttenschön, A.; Hillen, T.; Gerisch, A.; Painter, K. J., A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis, J. Math. Biol., 76, 429-56 (2018) · Zbl 1392.92012 · doi:10.1007/s00285-017-1144-3
[10] Chen, L.; Painter, K.; Surulescu, C.; Zhigun, A., Mathematical models for cell migration: a non-local perspective, Phil. Trans. R. Soc. B, 375 (2020) · doi:10.1098/rstb.2019.0379
[11] Cinelli, M.; De Francisci Morales, G.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M., The echo chamber effect on social media, Proc. Natl Acad. Sci., 118 (2021) · doi:10.1073/pnas.2023301118
[12] Deneke, V. E.; Melbinger, A.; Vergassola, M.; Di Talia, S., Waves of Cdk1 activity in S phase synchronize the cell cycle in Drosophila embryos, Dev. Cell, 38, 399-412 (2016) · doi:10.1016/j.devcel.2016.07.023
[13] Deutsch, A.; Dormann, S., Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Examples and Analysis, pp 160-83 (2017), Springer
[14] Olver, F W JOlde Daalhuis, A BLozier, D WSchneider, B IBoisvert, R FClark, C WMiller, B RSaunders, B VCohl, H SMcClain, M A2023NIST Digital Library of Mathematical Functions, Release 1.1.9 of 2023-03-15(available at: https://dlmf.nist.gov/)
[15] Dörfler, F.; Bullo, F., Synchronization in complex networks of phase oscillators: a survey, Automatica, 50, 1539-64 (2014) · Zbl 1296.93005 · doi:10.1016/j.automatica.2014.04.012
[16] Dyson, J.; Gourley, S. A.; Webb, G. F., A non-local evolution equation model of cell-cell adhesion in higher dimensional space, J. Biol. Dyn., 7, 68-87 (2013) · Zbl 1448.92068 · doi:10.1080/17513758.2012.755572
[17] Evans, L. C., Partial Differential Equations (2010), American Mathematical Society · Zbl 1194.35001
[18] Faust, L. F., Natural history and flash repertoire of the synchronous firefly Photinus carolinus (Coleoptera: Lampyridae) in the Great Smoky Mountains National Park, Fla. Entomol., 93, 208-17 (2010) · doi:10.1653/024.093.0210
[19] Glazier, J. A.; Graner, F., Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, 47, 2128 (1993) · doi:10.1103/PhysRevE.47.2128
[20] Glimm, T.; Bhat, R.; Newman, S. A., Modeling the morphodynamic galectin patterning network of the developing avian limb skeleton, J. Theor. Biol., 346, 86-108 (2014) · Zbl 1412.92017 · doi:10.1016/j.jtbi.2013.12.004
[21] Glimm, T.; Zhang, J., Numerical approach to a nonlocal advection-reaction-diffusion model of cartilage pattern formation, Math. Comput. Appl., 25, 36 (2020) · doi:10.3390/mca25020036
[22] Gregor, T.; Fujimoto, K.; Masaki, N.; Sawai, S., The onset of collective behavior in social amoebae, Science, 328, 1021-5 (2010) · doi:10.1126/science.1183415
[23] Guzzo, M., A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus, Nat. Microbiol., 3, 948-59 (2018) · doi:10.1038/s41564-018-0203-x
[24] Hansel, D.; Mato, G.; Meunier, C., Synchrony in excitatory neural networks, Neural Comput., 7, 307-37 (1995) · doi:10.1162/neco.1995.7.2.307
[25] Hecht, F., New development in freefem++, J. Numer. Math., 20, 251-65 (2012) · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[26] Hillen, T.; Hinow, P.; Wang, Z-A, Mathematical analysis of a kinetic model for cell movement in network tissues, Discrete Contin. Dyn. Syst. B, 14, 1055-80 (2010) · Zbl 1205.35165 · doi:10.3934/dcdsb.2010.14.1055
[27] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, Jahresber. Dtsch. Math.-Ver., 105, 103-65 (2003) · Zbl 1071.35001
[28] Igoshin, O. A.; Goldbeter, A.; Kaiser, D.; Oster, G., A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development, Proc. Natl Acad. Sci., 101, 15760-5 (2004) · doi:10.1073/pnas.0407111101
[29] Iwasa, M.; Iida, K.; Tanaka, D., Hierarchical cluster structures in a one-dimensional swarm oscillator model, Phys. Rev. E, 81 (2010) · doi:10.1103/PhysRevE.81.046220
[30] Jiang, Y-J; Aerne, B. L.; Smithers, L.; Haddon, C.; Ish-Horowicz, D.; Lewis, J., Notch signalling and the synchronization of the somite segmentation clock, Nature, 408, 475-9 (2000) · doi:10.1038/35044091
[31] Kageyama, R.; Shimojo, H.; Isomura, A., Oscillatory control of notch signaling in development, Molecular Mechanisms of Notch Signaling, pp 265-77 (2018), Springer
[32] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[33] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence (Springer Series in Synergetics vol 19) (1984), Springer · Zbl 0558.76051
[34] Marée, A. F.; Hogeweg, P., How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum, Proc. Natl Acad. Sci., 98, 3879-83 (2001) · doi:10.1073/pnas.061535198
[35] Newman, S. A.; Bhat, R., Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form, Int. J. Dev. Biol., 53, 693-705 (2009) · doi:10.1387/ijdb.072481sn
[36] O’Keeffe, K.; Ceron, S.; Petersen, K., Collective behavior of swarmalators on a ring, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.014211
[37] O’Keeffe, K. P.; Hong, H.; Strogatz, S. H., Oscillators that sync and swarm, Nat. Commun., 8, 1504 (2017) · doi:10.1038/s41467-017-01190-3
[38] Perthame, B., Transport Equations in Biology (Frontiers in Mathematics) (2006), Birkhäuser
[39] Peruani, F.; Starruß, J.; Jakovljevic, V.; Søgaard-Andersen, L.; Deutsch, A.; Bär, M., Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.098102
[40] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences (2003), Cambridge University Press · Zbl 1219.37002
[41] Ramírez-Ávila, G. M.; Kurths, J.; Depickère, S.; Deneubourg, J-L; Macau, E. E N., Modeling fireflies synchronization, A Mathematical Modeling Approach From Nonlinear Dynamics to Complex Systems (Nonlinear Systems and Complexity), pp 131-56 (2019), Springer · Zbl 1414.92065
[42] Rodrigues, F. A.; Peron, T. K D.; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1-98 (2016) · Zbl 1357.34089 · doi:10.1016/j.physrep.2015.10.008
[43] Sar, G. K.; Chowdhury, S. N.; Perc, M.; Ghosh, D., Swarmalators under competitive time-varying phase interactions, New J. Phys., 24 (2022) · doi:10.1088/1367-2630/ac5da2
[44] Shimkets, L. J.; Kaiser, D., Induction of coordinated movement of Myxococcus xanthus cells, J. Bacteriol., 152, 451-61 (1982) · doi:10.1128/jb.152.1.451-461.1982
[45] Singer, W., Neuronal synchrony: a versatile code for the definition of relations?, Neuron, 24, 49-65 (1999) · doi:10.1016/s0896-6273(00)80821-1
[46] Sokol, J., How Do Fireflies Flash in Sync? Studies Suggest a New Answer., Quanta Mag. (2022)
[47] Steinberg, M. S., Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool., 173, 395-433 (1970) · doi:10.1002/jez.1401730406
[48] Strogatz, S. H., From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1-20 (2000) · Zbl 0983.34022 · doi:10.1016/S0167-2789(00)00094-4
[49] Strogatz, S. H.; Mirollo, R. E., Stability of incoherence in a population of coupled oscillators, J. Stat. Phys., 63, 613-35 (1991) · doi:10.1007/BF01029202
[50] Tanaka, D., General chemotactic model of oscillators, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.134103
[51] Thutupalli, S.; Sun, M.; Bunyak, F.; Palaniappan, K.; Shaevitz, J. W., Directional reversals enable Myxococcus xanthus cells to produce collective one-dimensional streams during fruiting-body formation, J. R. Soc. Interface, 12 (2015) · doi:10.1098/rsif.2015.0049
[52] Uhlhaas, P.; Pipa, G.; Lima, B.; Melloni, L.; Neuenschwander, S.; Nikolić, D.; Singer, W., Neural synchrony in cortical networks: history, concept and current status, Front. Integr. Neurosci., 3, 17 (2009) · doi:10.3389/neuro.07.017.2009
[53] Van Oss, C.; Panfilov, A. V.; Hogeweg, P.; Siegert, F.; Weijer, C. J., Spatial pattern formation during aggregation of the slime mould Dictyostelium discoideum, J. Theor. Biol., 181, 203-13 (1996) · doi:10.1006/jtbi.1996.0126
[54] Venzin, O. F.; Oates, A. C., What are you synching about? emerging complexity of notch signaling in the segmentation clock, Dev. Biol., 460, 40-54 (2020) · doi:10.1016/j.ydbio.2019.06.024
[55] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75, 1226-9 (1995) · doi:10.1103/PhysRevLett.75.1226
[56] Winfree, A. T., The Timing of Biological Clocks (1987), Scientific American Library
[57] Witthaut, D.; Timme, M., Kuramoto dynamics in Hamiltonian systems, Phys. Rev. E, 90 (2014) · doi:10.1103/PhysRevE.90.032917
[58] Wu, Y.; Kaiser, A. D.; Jiang, Y.; Alber, M. S., Periodic reversal of direction allows Myxobacteria to swarm, Proc. Natl Acad. Sci., 106, 1222-7 (2009) · doi:10.1073/pnas.0811662106
[59] Zusman, D. R.; Scott, A. E.; Yang, Z.; Kirby, J. R., Chemosensory pathways, motility and development in Myxococcus xanthus, Nat. Rev. Microbiol., 5, 862-72 (2007) · doi:10.1038/nrmicro1770
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.