×

Inapproximability of shortest paths on perfect matching polytopes. (English) Zbl 1534.90173

Del Pia, Alberto (ed.) et al., Integer programming and combinatorial optimization. 24th international conference, IPCO 2023, Madison, WI, USA, June 21–23, 2023. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13904, 72-86 (2023).
Summary: We consider the computational problem of finding short paths in the skeleton of the perfect matching polytope of a bipartite graph. We prove that unless \(\mathsf{P}=\mathsf{NP} \), there is no polynomial-time algorithm that computes a path of constant length between two vertices at distance two of the perfect matching polytope of a bipartite graph. Conditioned on \(\mathsf{P}\ne \mathsf{NP} \), this disproves a conjecture by Ito, Kakimura, Kamiyama, Kobayashi and Okamoto [T. Ito et al., SIAM J. Discrete Math. 36, No. 2, 1102–1123 (2022; Zbl 1487.05207)]. Assuming the Exponential Time Hypothesis we prove the stronger result that there exists no polynomial-time algorithm computing a path of length at most \(\left( \frac{1}{4}-o(1)\right) \frac{\log N}{\log \log N}\) between two vertices at distance two of the perfect matching polytope of an N-vertex bipartite graph. These results remain true if the bipartite graph is restricted to be of maximum degree three.
The above has the following interesting implication for the performance of pivot rules for the simplex algorithm on simply-structured combinatorial polytopes: If \(\mathsf{P}\ne \mathsf{NP} \), then for every simplex pivot rule executable in polynomial time and every constant \(k \in \mathbb{N}\) there exists a linear program on a perfect matching polytope and a starting vertex of the polytope such that the optimal solution can be reached using only two monotone non-degenerate steps from the starting vertex, yet the pivot rule will require at least \(k\) non-degenerate steps to reach the optimal solution. This result remains true in the more general setting of pivot rules for so-called circuit-augmentation algorithms.
For the entire collection see [Zbl 1523.90002].

MSC:

90C35 Programming involving graphs or networks

Citations:

Zbl 1487.05207

References:

[1] Adler, I.; Papadimitriou, C.; Rubinstein, A.; Lee, J.; Vygen, J., On simplex pivoting rules and complexity theory, Integer Programming and Combinatorial Optimization, 13-24 (2014), Cham: Springer, Cham · Zbl 1418.90145 · doi:10.1007/978-3-319-07557-0_2
[2] Aichholzer, O., Flip distances between graph orientations, Algorithmica, 83, 1, 116-143 (2021) · Zbl 1511.05100 · doi:10.1007/s00453-020-00751-1
[3] Alon, N.; Yuster, R.; Zwick, U., Color-coding, J. ACM, 42, 4, 844-856 (1995) · Zbl 0885.68116 · doi:10.1145/210332.210337
[4] Avis, D.; Friedmann, O., An exponential lower bound for Cunningham’s rule, Math. Program., 161, 1-2, 271-305 (2017) · Zbl 1360.90163 · doi:10.1007/s10107-016-1008-4
[5] Barahona, F.; Tardos, É., Note on Weintraub’s minimum-cost circulation algorithm, SIAM J. Comput., 18, 3, 579-583 (1989) · Zbl 0674.90025 · doi:10.1137/0218039
[6] Björklund, A.; Husfeldt, T.; Khanna, S.; Díaz, J.; Karhumäki, J.; Lepistö, A.; Sannella, D., Approximating longest directed paths and cycles, Automata, Languages and Programming, 222-233 (2004), Heidelberg: Springer, Heidelberg · Zbl 1098.68094 · doi:10.1007/978-3-540-27836-8_21
[7] Bland, RG, New finite pivoting rules for the simplex method, Math. Oper. Res., 2, 2, 103-107 (1977) · Zbl 0408.90050 · doi:10.1287/moor.2.2.103
[8] Bonamy, M., et al.: The perfect matching reconfiguration problem. In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany. LIPIcs, vol. 138, pp. 80:1-80:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019) · Zbl 1541.68274
[9] Borgwardt, S.; Brand, C.; Feldmann, AE; Koutecký, M., A note on the approximability of deepest-descent circuit steps, Oper. Res. Lett., 49, 3, 310-315 (2021) · Zbl 1525.90261 · doi:10.1016/j.orl.2021.02.003
[10] Borgwardt, S.; Finhold, E.; Hemmecke, R., On the circuit diameter of dual transportation polyhedra, SIAM J. Discrete Math., 29, 1, 113-121 (2015) · Zbl 1335.90058 · doi:10.1137/140976868
[11] Borgwardt, S.; Viss, C., A polyhedral model for enumeration and optimization over the set of circuits, Discret. Appl. Math., 308, 68-83 (2022) · Zbl 1483.90075 · doi:10.1016/j.dam.2019.07.025
[12] Bousquet, N.; Hatanaka, T.; Ito, T.; Mühlenthaler, M.; Sau, I.; Thilikos, DM, Shortest reconfiguration of matchings, Graph-Theoretic Concepts in Computer Science, 162-174 (2019), Cham: Springer, Cham · Zbl 1537.68118 · doi:10.1007/978-3-030-30786-8_13
[13] Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory, Ser. B 18(2), 138-154 (1975) · Zbl 0277.05139
[14] Cioabă, SM; Royle, G.; Tan, ZK, On the flip graphs on perfect matchings of complete graphs and signed reversal graphs, Australas. J. Comb., 81, 480-497 (2021) · Zbl 1482.05267
[15] De Loera, JA; Hemmecke, R.; Lee, J., On augmentation algorithms for linear and integer-linear programming: from Edmonds-Karp to Bland and beyond, SIAM J. Optim., 25, 4, 2494-2511 (2015) · Zbl 1330.90053 · doi:10.1137/151002915
[16] De Loera, JA; Kafer, S.; Sanità, L., Pivot rules for circuit-augmentation algorithms in linear optimization, SIAM J. Optim., 32, 3, 2156-2179 (2022) · Zbl 1500.90022 · doi:10.1137/21M1419994
[17] Diaconis, PW; Holmes, SP, Matchings and phylogenetic trees, Proc. Natl. Acad. Sci. USA, 95, 25, 14600-14602 (1998) · Zbl 0908.92023 · doi:10.1073/pnas.95.25.14600
[18] Diaconis, PW; Holmes, SP, Random walks on trees and matchings, Electron. J. Probab., 7, 6, 1-17 (2002) · Zbl 1007.60071
[19] Disser, Y., Friedmann, O., Hopp, A.V.: An exponential lower bound for Zadeh’s pivot rule. CoRR abs/1911.01074 (2019). http://arxiv.org/abs/1911.01074 · Zbl 07681268
[20] Disser, Y., Skutella, M.: The simplex algorithm is NP-mighty. ACM Trans. Algorithms 15(1), 5:1-5:19 (2019) · Zbl 1454.90024
[21] Fearnley, J., Savani, R.: The complexity of the simplex method. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pp. 201-208. ACM (2015) · Zbl 1321.90079
[22] Gabow, H.N., Nie, S.: Finding a long directed cycle. ACM Trans. Algorithms 4(1), 7:1-7:21 (2008) · Zbl 1445.05102
[23] Gima, T., Ito, T., Kobayashi, Y., Otachi, Y.: Algorithmic meta-theorems for combinatorial reconfiguration revisited. In: Chechik, S., Navarro, G., Rotenberg, E., Herman, G. (eds.) 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany. LIPIcs, vol. 244, pp. 61:1-61:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
[24] Goldfarb, D.; Sit, WY, Worst case behavior of the steepest edge simplex method, Discret. Appl. Math., 1, 4, 277-285 (1979) · Zbl 0423.90044 · doi:10.1016/0166-218X(79)90004-0
[25] Gupta, M.; Kumar, H.; Misra, N.; Catania, B.; Královič, R.; Nawrocki, J.; Pighizzini, G., On the complexity of optimal matching reconfiguration, SOFSEM 2019: Theory and Practice of Computer Science, 221-233 (2019), Cham: Springer, Cham · Zbl 1444.68142 · doi:10.1007/978-3-030-10801-4_18
[26] Hansen, T.D., Zwick, U.: An improved version of the random-facet pivoting rule for the simplex algorithm. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pp. 209-218. ACM (2015) · Zbl 1321.90080
[27] van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society Lecture Note Series, vol. 409, pp. 127-160. Cambridge University Press (2013) · Zbl 1307.05005
[28] Ito, T., On the complexity of reconfiguration problems, Theor. Comput. Sci., 412, 12-14, 1054-1065 (2011) · Zbl 1207.68166 · doi:10.1016/j.tcs.2010.12.005
[29] Ito, T.; Kakimura, N.; Kamiyama, N.; Kobayashi, Y.; Okamoto, Y., Shortest reconfiguration of perfect matchings via alternating cycles, SIAM J. Discret. Math., 36, 2, 1102-1123 (2022) · Zbl 1487.05207 · doi:10.1137/20M1364370
[30] Iwata, S., On matroid intersection adjacency, Discret. Math., 242, 1-3, 277-281 (2002) · Zbl 0987.05034 · doi:10.1016/S0012-365X(01)00167-4
[31] Jeroslow, RG, The simplex algorithm with the pivot rule of maximizing criterion improvement, Discret. Math., 4, 4, 367-377 (1973) · Zbl 0254.90027 · doi:10.1016/0012-365X(73)90171-4
[32] Kafer, S.; Pashkovich, K.; Sanità, L., On the circuit diameter of some combinatorial polytopes, SIAM J. Discret. Math., 33, 1, 1-25 (2019) · Zbl 1416.52006 · doi:10.1137/17M1152115
[33] Kaminski, M.; Medvedev, P.; Milanic, M., Complexity of independent set reconfigurability problems, Theor. Comput. Sci., 439, 9-15 (2012) · Zbl 1246.05121 · doi:10.1016/j.tcs.2012.03.004
[34] Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), pp. 159-175. Academic Press, New York (1972) · Zbl 0297.90047
[35] Monroy, RF; Flores-Peñaloza, D.; Huemer, C.; Hurtado, F.; Wood, DR; Urrutia, J., On the chromatic number of some flip graphs, Discret. Math. Theor. Comput. Sci., 11, 2, 47-56 (2009) · Zbl 1196.05032
[36] Nishimura, N., Introduction to reconfiguration, Algorithms, 11, 4, 52 (2018) · Zbl 1461.68164 · doi:10.3390/a11040052
[37] Santos, F., A counterexample to the Hirsch conjecture, Ann. Math., 176, 1, 383-412 (2012) · Zbl 1252.52007 · doi:10.4007/annals.2012.176.1.7
[38] Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, vol. 24. Springer (2003) · Zbl 1041.90001
[39] Williams, V.V.: On some fine-grained questions in algorithms and complexity. In: Proceedings of the International Congress of Mathematicians (ICM 2018), pp. 3447-3487. World Scientific (2018) · Zbl 1490.68115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.