×

Recycling inequalities for robust combinatorial optimization with budget uncertainty. (English) Zbl 1534.90100

Del Pia, Alberto (ed.) et al., Integer programming and combinatorial optimization. 24th international conference, IPCO 2023, Madison, WI, USA, June 21–23, 2023. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13904, 58-71 (2023).
Summary: Robust combinatorial optimization with budget uncertainty is one of the most popular approaches for integrating uncertainty in optimization problems. The existence of a compact reformulation for (mixed-integer) linear programs and positive complexity results give the impression that these problems are relatively easy to solve. However, the practical performance of the reformulation is actually quite poor when solving robust integer problems due to its weak linear relaxation.
To overcome the problems arising from the weak formulation, we propose a procedure to derive new classes of valid inequalities for robust binary optimization problems. For this, we recycle valid inequalities of the underlying deterministic problem such that the additional variables from the robust formulation are incorporated. The valid inequalities to be recycled may either be readily available model constraints or actual cutting planes, where we can benefit from decades of research on valid inequalities for classical optimization problems.
We first demonstrate the strength of the inequalities theoretically, by proving that recycling yields a facet-defining inequality in surprisingly many cases, even if the original valid inequality was not facet-defining. Afterwards, we show in a computational study that using recycled inequalities leads to a significant improvement of the computation time when solving robust optimization problems.
For the entire collection see [Zbl 1523.90002].

MSC:

90C17 Robustness in mathematical programming
90C27 Combinatorial optimization

Software:

MIPLIB; DIMACS; Gurobi; SCIP
Full Text: DOI

References:

[1] Achterberg, T.: Constraint integer programming. Ph.D. Thesis, Technische Universitat Berlin (2007) · Zbl 1430.90427
[2] Álvarez-Miranda, E., Ljubić, I., Toth, P.: A note on the Bertsimas & Sim algorithm for robust combinatorial optimization problems. 4OR 11(4), 349-360 (2013) · Zbl 1302.90136
[3] Atamtürk, A., Strong formulations of robust mixed 0-1 programming, Math. Program., 108, 2-3, 235-250 (2006) · Zbl 1136.93331 · doi:10.1007/s10107-006-0709-5
[4] Bertsimas, D.; Dunning, I.; Lubin, M., Reformulation versus cutting-planes for robust optimization, CMS, 13, 2, 195-217 (2016) · doi:10.1007/s10287-015-0236-z
[5] Bertsimas, D.; Sim, M., Robust discrete optimization and network flows, Math. Program., 98, 1-3, 49-71 (2003) · Zbl 1082.90067 · doi:10.1007/s10107-003-0396-4
[6] Bertsimas, D.; Sim, M., The price of robustness, Oper. Res., 52, 1, 35-53 (2004) · Zbl 1165.90565 · doi:10.1287/opre.1030.0065
[7] Büsing, C.; Gersing, T.; Koster, AM, A branch and bound algorithm for robust binary optimization with budget uncertainty, Math. Program. Comput. (2023) · Zbl 1517.90082 · doi:10.1007/s12532-022-00232-2
[8] Conforti, M., Cornuéjols, G., Zambelli, G., et al.: Integer Programming, vol. 271. Springer, Cham (2014). doi:10.1007/978-3-319-11008-0 · Zbl 1307.90001
[9] Fischetti, M.; Monaci, M., Cutting plane versus compact formulations for uncertain (integer) linear programs, Math. Program. Comput., 4, 3, 239-273 (2012) · Zbl 1275.90046 · doi:10.1007/s12532-012-0039-y
[10] Gersing, T.: Algorithms for robust binary optimization, December 2022. doi:10.5281/zenodo.7463371
[11] Gersing, T., Büsing, C., Koster, A.: Benchmark Instances for Robust Combinatorial Optimization with Budgeted Uncertainty, December 2022. doi:10.5281/zenodo.7419028
[12] Gleixner, A., MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library, Math. Program. Comput., 13, 3, 443-490 (2021) · Zbl 1476.90191 · doi:10.1007/s12532-020-00194-3
[13] Gurobi Optimization, LLC: Gurobi optimizer reference manual, version 9.5 (2022). http://www.gurobi.com
[14] Hansknecht, C., Richter, A., Stiller, S.: Fast robust shortest path computations. In: 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)
[15] Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS implementation challenge, 11-13 October 1993, vol. 26. American Mathematical Society (1996) · Zbl 0875.68678
[16] Joung, S.; Park, S., Robust mixed 0-1 programming and submodularity, INFORMS J. Optim., 3, 2, 183-199 (2021) · doi:10.1287/ijoo.2019.0042
[17] Lee, T., Kwon, C.: A short note on the robust combinatorial optimization problems with cardinality constrained uncertainty. 4OR 12(4), 373-378 (2014) · Zbl 1308.90111
[18] Padberg, MW, On the facial structure of set packing polyhedra, Math. Program., 5, 1, 199-215 (1973) · Zbl 0272.90041 · doi:10.1007/BF01580121
[19] Park, K.; Lee, K., A note on robust combinatorial optimization problem, Manag. Sci. Financ. Eng., 13, 1, 115-119 (2007)
[20] Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, vol. 31. Springer, New York (2013). doi:10.1007/978-1-4757-4388-3 · Zbl 0926.90078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.