×

Ensemble-based history matching of the Edvard Grieg field using 4D seismic data. (English) Zbl 1534.86010

Summary: The Edvard Grieg field is a highly complex and heterogeneous reservoir with an extensive fault structure and a mixture of sandstone, conglomerate, and shale. In this paper, we present a complete workflow for history matching the Edvard Grieg field using an ensemble smoother for Bayesian inference. An important aspect of the workflow is a methodology to check that the prior assumptions are suitable for assimilating the data, and procedures to verify that the posterior results are plausible and credible. We thoroughly describe several tools and visualization techniques for these purposes. Using these methods we show how to identify important parameters of the model. Furthermore, we utilize new compression methods for better handling large datasets. Simulating fluid flow and seismic response for reservoirs of this size and complexity requires high numerical resolution and accurate seismic models. We present a novel dual-model concept for a better representation of seismic data and attributes, that deploy different models for the underground depending on simulated properties. Results from history matching show that we can improve data matches for both production data and different seismic attributes. Updated parameters give new insight into the reservoir dynamics, and are calibrated to better represent water movement and pressure.

MSC:

86A32 Geostatistics
86A22 Inverse problems in geophysics
86A15 Seismology (including tsunami modeling), earthquakes
62F15 Bayesian inference

Software:

GitHub

References:

[1] Avseth, P., Skjei, N.: Rock physics modeling of static and dynamic reservoir properties—a heuristic approach for cemented sandstone reservoirs. Lead. Edge. 30(1), 90-96 (2011). doi:10.1190/1.3535437
[2] Avseth, P.; Dvorkin, J.; Mavko, G., Rock physics diagnostic of North Sea Sands: Link between microstructure and seismic properties, Geophys. Res. Lett., 27, 17, 2761-2764, 2000 · doi:10.1029/1999GL008468
[3] Avseth, P.; Johansen, TA; Bakhorji, A., Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones, Geophysics, 79, 2, D115-D121, 2014 · doi:10.1190/geo2013-0226.1
[4] Ceetron Solutions (2022) Resinsight. https://resinsight.org
[5] Chen, Y.; Oliver, DS, Ensemble randomized maximum likelihood method as an iterative ensemble smoother, Math. Geosci., 44, 1, 1-26, 2012 · doi:10.1007/s11004-011-9376-z
[6] Chen, Y.; Oliver, DS, Levenberg-marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification, Comput. Geosci., 17, 4, 689-703, 2013 · Zbl 1382.65031 · doi:10.1007/s10596-013-9351-5
[7] Chen, Y., Oliver, D.S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17(02), 244-256 (2014). SPE-164902-PA
[8] Emerick, AA, Analysis of the performance of ensemble-based assimilation of production and seismic data, J. Pet. Sci. Eng., 139, 219-239, 2016 · doi:10.1016/j.petrol.2016.01.029
[9] Emerick, AA; Reynolds, AC, Ensemble smoother with multiple data assimilation, Comput. Geosci., 55, 3-15, 2013 · doi:10.1016/j.cageo.2012.03.011
[10] Evensen, G.; Eikrem, KS, Conditioning reservoir models on rate data using ensemble smoothers, Comput. Geosci., 22, 5, 1251-1270, 2018 · Zbl 1406.86031 · doi:10.1007/s10596-018-9750-8
[11] Gazdag, J., Wave equation migration with the phase-shift method, GEOPHYSICS, 43, 7, 1342-1351, 1978 · doi:10.1190/1.1440899
[12] Gelman, A., Vehtari, A., Simpson, D., et al.: Bayesian workflow. (2020) arXiv:2011.01808, 2020
[13] Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins series in the mathematical sciences, The Johns Hopkins University Press, Baltimore (1983) · Zbl 0559.65011
[14] Gu, Y.; Oliver, DS, An iterative ensemble Kalman filter for multiphase fluid flow data assimilation, SPE J., 12, 4, 438-46, 2007 · doi:10.2118/108438-PA
[15] Leeuwenburgh, O.; Meekes, S.; Vandeweijer, V., Stochastic history matching to time-lapse seismic of a CO2-EOR project sector model, Int. J. Greenh. Gas Control, 54, 2, 441-453, 2016 · doi:10.1016/j.ijggc.2016.05.027
[16] Lie, E.O., Bhakta, T., Sandø, I.: Seismic modeling using dual-reservoir and geophysical models. In: SEG International Exposition and Annual Meeting. (2021) doi:10.1190/segam2021-3583399.1
[17] Lie, EO; Bhakta, T.; Sandø, I., Inclusion of seismic attributes in reservoir ensemble coverage analysis, Lead. Edge, 41, 12, 848-856, 2022 · doi:10.1190/tle41120848.1
[18] Lorentzen, RJ; Luo, X.; Bhakta, T., History matching the full Norne field model using seismic and production data, SPE J., 24, 4, 1452-1467, 2019 · doi:10.2118/194205-PA
[19] Lorentzen, RJ; Bhakta, T.; Grana, D., Simultaneous assimilation of production and seismic data: application to the Norne field, Comput. Geosci., 24, 907-920, 2020 · Zbl 1434.86028 · doi:10.1007/s10596-019-09900-0
[20] Luo, X., Bhakta, T.: Automatic and adaptive localization for ensemble-based history matching. J. Petrol. Sci. Eng. 184(March 2019), 106559 (2020). doi:10.1016/j.petrol.2019.106559
[21] Luo, X.; Stordal, AS; Lorentzen, RJ, Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: Theory and applications, SPE J., 20, 5, 962-982, 2015 · doi:10.2118/176023-PA
[22] Luo, X.; Bhakta, T.; Jakobsen, M., Efficient big data assimilation through sparse representation: a 3D benchmark case study in petroleum engineering, PLOS ONE, 13, e0198586, 2018 · doi:10.1371/journal.pone.0198586
[23] Luo, X., Lorentzen, R.J., Valestrand, R., et al.: Correlation-based adaptive localization for ensemble-based history matching: Applied to the Norne field case study. SPE Reserv. Eval. Eng. (2019) in press doi:10.2118/191305-PA, SPE-191305-PA
[24] Mahmic, O.; Dypvik, H.; Hammer, E., Diagenetic influence on reservoir quality evolution, examples from Triassic conglomerates/arenites in the Edvard Grieg field, Norwegian North Sea. Mar. Pet. Geol., 93, 247-271, 2018 · doi:10.1016/j.marpetgeo.2018.03.006
[25] da Nobrega, DV; de Moraes, FS; Emerick, AA, Data assimilation of a legacy 4D seismic in a brown field, J. Geophys. Eng., 15, 6, 2585-2601, 2018 · doi:10.1088/1742-2140/aadd68
[26] Norce Energy (2023) Python Ensemble Toolbox (PET). https://github.com/Python-Ensemble-Toolbox/PET, Data assimilation and optimization group
[27] Oliver, DS, Diagnosing reservoir model deficiency for model improvement, J. Petrol. Sci. Eng., 193, 2020 · doi:10.1016/j.petrol.2020.107367
[28] Oliver, DS; Fossum, K.; Bhakta, T., 4D seismic history matching, J. Pet. Sci. Eng., 207, 2021 · doi:10.1016/j.petrol.2021.109119
[29] Rasmussen, A.F., Sandve, T.H., Bao, K., et al.: The open porous media flow reservoir simulator. Comput. Math. App. 81, 159-185 (2021). doi:10.1016/j.camwa.2020.05.014, development and Application of Open-source Software for Problems with Numerical PDEs · Zbl 1457.76107
[30] Stordal, A.; Lorentzen, R.; Fossum, K., Marginalized iterative ensemble smoothers for data assimilation, Comput. Geosci., 2023 · Zbl 1528.86009 · doi:10.1007/s10596-023-10242-1
[31] Walpole, L.J.: On bounds for the overall elastic moduli of inhomogeneous systems—I. J. Mech. Phys. Solids 14(3), 151-162 (1966a). doi:10.1016/0022-5096(66)90035-4 · Zbl 0139.18701
[32] Walpole, L.J.: On bounds for the overall elastic moduli of inhomogeneous systems—II. J. Mech. Phys. Solids 14(5), 289-301 (1966b). doi:10.1016/0022-5096(66)90025-1
[33] Yin, Z.; Feng, T.; MacBeth, C., Fast assimilation of frequently acquired 4D seismic data for reservoir history matching, Comput. Geosci., 128, 30-40, 2019 · doi:10.1016/j.cageo.2019.04.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.