×

Anisotropic Segré [(11)(1,1)] dark energy following a particular equation of state. (English) Zbl 1534.83130

Summary: A generally anisotropic equation of state originally derived in the context of Newman-Janis rotating systems allows for vacuum energy at a specific density. In this paper we examine the possibility of using that equation of state for cosmological dark energy. We treat the case of large scale ordering of the directions of the energy-momentum tensor eigenvectors with a Bianchi cosmological model, and treat the case where the ordering is random on small scales with an effectively isotropic FLRW system. We find particular spacetimes which evolve towards a vacuum energy/ de Sitter like configuration in either case. In the anisotropic Bianchi case, the system can have behavior reminiscent of big bounce cosmologies, in which the matter content approaches vacuum energy at large scale factor and can behave in a variety of ways at small scale factor. For particular conditions in the effectively isotropic case, we can evolve between true and false vacuum configurations, or between radiation like and vacuum energy configurations. We also show how some simpler equations of state behave under the same assumptions to elucidate the methods for analysis.
{© 2023 IOP Publishing Ltd and Sissa Medialab}

MSC:

83F05 Relativistic cosmology
83C56 Dark matter and dark energy
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] Ratra, Bharat; Peebles, P. J. E., Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev. D, 37, 3406 (1988) · doi:10.1103/PhysRevD.37.3406
[2] Tsujikawa, Shinji, Quintessence: a Review, Class. Quant. Grav., 30 (2013) · Zbl 1277.83012 · doi:10.1088/0264-9381/30/21/214003
[3] Steinhardt, P. J., A quintessential introduction to dark energy, Phil. Trans. Roy. Soc. Lond. A, 361, 2497-2513 (2003) · Zbl 1055.85504 · doi:10.1098/rsta.2003.1290
[4] Amendola, L.; Finelli, Fabio; Burigana, C.; Carturan, D., WMAP and the generalized Chaplygin gas, JCAP, 07 (2003) · Zbl 1027.83510 · doi:10.1088/1475-7516/2003/07/005
[5] Bento, M. C.; Bertolami, O.; Sen, A. A., Generalized Chaplygin gas model: dark energy - dark matter unification and CMBR constraints, Gen. Rel. Grav., 35, 2063-2069 (2003) · Zbl 1044.83025 · doi:10.1023/A:1026207312105
[6] Nojiri, Shin’ichi; Odintsov, Sergei D.; Tsujikawa, Shinji, Properties of singularities in (phantom) dark energy universe, Phys. Rev. D, 71 (2005) · doi:10.1103/PhysRevD.71.063004
[7] Chevallier, Michel; Polarski, David, Accelerating universes with scaling dark matter, Int. J. Mod. Phys. D, 10, 213-224 (2001) · doi:10.1142/S0218271801000822
[8] Nojiri, Shin’ichi; Odintsov, Sergei D., Inhomogeneous equation of state of the universe: phantom era, future singularity and crossing the phantom barrier, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.023003
[9] Brevik, Iver H.; Gorbunova, O., Dark energy and viscous cosmology, Gen. Rel. Grav., 37, 2039-2045 (2005) · Zbl 1093.83046 · doi:10.1007/s10714-005-0178-9
[10] Li, Xiaolei; Shafieloo, Arman, A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tension, Astrophys. J. Lett., 883, L3 (2019) · doi:10.3847/2041-8213/ab3e09
[11] Bamba, Kazuharu; Capozziello, Salvatore; Nojiri, Shin’ichi; Odintsov, Sergei D., Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci., 342, 155-228 (2012) · Zbl 1314.83037 · doi:10.1007/s10509-012-1181-8
[12] Motta, Verónica; García-Aspeitia, Miguel A.; Hernández-Almada, Alberto; Magaña, Juan; Verdugo, Tomás, Taxonomy of Dark Energy Models, Universe, 7, 163 (2021) · doi:10.3390/universe7060163
[13] Dymnikova, Irina, Variable cosmological contrast: geometry and physics (2000)
[14] Koivisto, Tomi; Mota, David F., Anisotropic Dark Energy: dynamics of Background and Perturbations, JCAP, 06 (2008) · doi:10.1088/1475-7516/2008/06/018
[15] Akarsu, Ozgur; Kilinc, Can Battal, Bianchi type III models with anisotropic dark energy, Gen. Rel. Grav., 42, 763-775 (2010) · Zbl 1187.83015 · doi:10.1007/s10714-009-0878-7
[16] Motoa-Manzano, J.; Bayron Orjuela-Quintana, J.; Pereira, Thiago S.; Valenzuela-Toledo, César A., Anisotropic solid dark energy, Phys. Dark Univ., 32 (2021) · doi:10.1016/j.dark.2021.100806
[17] Stephani, Hans; Kramer, D.; MacCallum, Malcolm A. H.; Hoenselaers, Cornelius; Herlt, Eduard, Exact solutions of Einstein’s field equations (2003), Cambridge Univ. Press · Zbl 1057.83004
[18] Gibbons, G. W.; Rasheed, D. A., Electric - magnetic duality rotations in nonlinear electrodynamics, Nucl. Phys. B, 454, 185-206 (1995) · Zbl 0925.83031 · doi:10.1016/0550-3213(95)00409-L
[19] Ayon-Beato, Eloy; Garcia, Alberto, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett., 80, 5056-5059 (1998) · doi:10.1103/PhysRevLett.80.5056
[20] Lobo, Francisco S. N.; Arellano, Aaron V. B., Gravastars supported by nonlinear electrodynamics, Class. Quant. Grav., 24, 1069-1088 (2007) · Zbl 1110.83317 · doi:10.1088/0264-9381/24/5/004
[21] Beltracchi, Philip; Gondolo, Paolo, A curious general relativistic sphere (2019)
[22] D.D. Sokolov and A.A. Starobinskii, The structure of the curvature tensor at conical singularities, Sov. Phys. Dokl.22 (1977) 312. · Zbl 0375.53008
[23] Vilenkin, A., Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev. D, 23, 852-857 (1981) · doi:10.1103/PhysRevD.23.852
[24] Hiscock, W. A., Exact Gravitational Field of a String, Phys. Rev. D, 31, 3288-3290 (1985) · doi:10.1103/PhysRevD.31.3288
[25] Letelier, P. S., CLOUDS OF STRINGS IN GENERAL RELATIVITY, Phys. Rev. D, 20, 1294-1302 (1979) · doi:10.1103/PhysRevD.20.1294
[26] Gurses, Metin; Gursey, Feza, Derivation of the String Equation of Motion in General Relativity, Phys. Rev. D, 11, 967 (1975) · doi:10.1103/PhysRevD.11.967
[27] J. Bardeen, Non-singular general-relativistic gravitational collapse, in Proceedings of the International Conference GR5, Tbilisi, U.S.S.R. (1968).
[28] Dymnikova, I., Vacuum nonsingular black hole, Gen. Rel. Grav., 24, 235-242 (1992) · doi:10.1007/BF00760226
[29] Hayward, Sean A., Formation and evaporation of regular black holes, Phys. Rev. Lett., 96 (2006) · Zbl 1087.83022 · doi:10.1103/PhysRevLett.96.031103
[30] Newman, E. T.; Janis, A. I., Note on the Kerr spinning particle metric, J. Math. Phys., 6, 915-917 (1965) · Zbl 0142.46305 · doi:10.1063/1.1704350
[31] Newman, E. T.; Couch, R.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R., Metric of a Rotating, Charged Mass, J. Math. Phys., 6, 918-919 (1965) · doi:10.1063/1.1704351
[32] Kerr, Roy P., Discovering the Kerr and Kerr-Schild metrics (2007) · Zbl 1175.83019
[33] Gurses, Metin; Feza, Gursey, Lorentz Covariant Treatment of the Kerr-Schild Metric, J. Math. Phys., 16, 2385 (1975) · doi:10.1063/1.522480
[34] Ibohal, Ng, Rotating metrics admitting nonperfect fluids in general relativity, Gen. Rel. Grav., 37, 19-51 (2005) · Zbl 1062.83046 · doi:10.1007/s10714-005-0002-6
[35] Dymnikova, Irina, Spinning superconducting electrovacuum soliton, Phys. Lett. B, 639, 368-372 (2006) · Zbl 1248.83042 · doi:10.1016/j.physletb.2006.06.035
[36] Azreg-Ainou, Mustapha, Regular and conformal regular cores for static and rotating solutions, Phys. Lett. B, 730, 95-98 (2014) · Zbl 1381.83052 · doi:10.1016/j.physletb.2014.01.041
[37] de Urreta, E. J. Gonzalez; Socolovsky, M., Extended Newman-Janis algorithm for rotating and Kerr-Newman de Sitter and anti de Sitter metrics (2015)
[38] Beltracchi, Philip; Gondolo, Paolo, Physical interpretation of Newman-Janis rotating systems. I. A unique family of Kerr-Schild systems, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.124066
[39] T. Levi-Civita, Republication of: the physical reality of some normal spaces of Bianchi, Gen. Rel. Grav.43 (2011) 2307. · Zbl 1225.83014 · doi:10.1007/s10714-011-1188-4
[40] Robinson, I., A Solution of the Maxwell-Einstein Equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 7, 351-352 (1959) · Zbl 0085.42804
[41] Bertotti, B., Uniform electromagnetic field in the theory of general relativity, Phys. Rev., 116, 1331 (1959) · Zbl 0093.43403 · doi:10.1103/PhysRev.116.1331
[42] R.G. McLenaghan and N. Tariq, A new solution of the Einstein-Maxwell equations, J. Math. Phys.16 (1975) 2306. · doi:10.1063/1.522461
[43] K.A. Bronnikov and O.B. Zaslavskii, Black holes can have curly hair, Phys. Rev. D78 (2008) 021501 [0801.0889]. · doi:10.1103/PhysRevD.78.021501
[44] Kolb, Edward W., A Coasting Cosmology, Astrophys. J., 344, 543-550 (1989) · doi:10.1086/167825
[45] Aldrovandi, R.; Cuzinatto, R. R.; Medeiros, L. G., Analytic solutions for the Lambda-FRW model, Found. Phys., 36, 1736-1752 (2006) · Zbl 1117.83114 · doi:10.1007/s10701-006-9076-6
[46] Wald, Robert M., General Relativity (1984), Chicago Univ. Pr. · Zbl 0549.53001
[47] L. Bianchi, On the three-dimensional spaces which admit a continuous group of motions, Mem. Mat. Fis. Soc. Ital. Sci.11 (1898) 267.
[48] F.B. Estabrook, H.D. Wahlquist and C.G. Behr, Dyadic analysis of spatially homogeneous world models, J. Math. Phys.9 (1968) 497. · doi:10.1063/1.1664602
[49] Ellis, G. F. R.; MacCallum, Malcolm A. H., A Class of homogeneous cosmological models, Commun. Math. Phys., 12, 108-141 (1969) · Zbl 0177.57601 · doi:10.1007/BF01645908
[50] Krasinski, Andrzej; Behr, Christoph G.; Schucking, Engelbert; Estabrook, Frank B.; Wahlquist, Hugo D.; Ellis, George F. R.; Jantzen, Robert; Kundt, Wolfgang, The Bianchi classification in the Schucking-Behr approach, Gen. Rel. Grav., 35, 475-489 (2003) · Zbl 1016.83004 · doi:10.1023/A:1022382202778
[51] Ellis, G. F. R., The Bianchi models: then and now, Gen. Rel. Grav., 38, 1003-1015 (2006) · Zbl 1117.83121 · doi:10.1007/s10714-006-0283-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.