×

Supersymmetric massive gravity. (English) Zbl 1534.81163

Summary: We initiate a systematic study of the self-interactions of a massive spin-2 “graviton” consistent with up to \(\mathcal{N} = 4\) supersymmetry. Using a recently developed massive on-shell superspace formalism, we construct the most general set of cubic massive graviton amplitudes in a form with all supersymmetry and Lorentz invariance manifest. We find that for \(\mathcal{N} \geq 3\) supersymmetry, the family of consistent interactions coincide with those of the ghost-free dRGT model. For \(\mathcal{N} = 4\) (maximal) supersymmetry there is a single consistent cubic interaction which coincides with the unique structure required for the absence of asymptotic superluminality. Additionally, we discuss the structure of interactions in the high-energy limit, connections to supersymmetric Galileons and the possibility of a supersymmetric massive double copy.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
83E50 Supergravity
83C45 Quantization of the gravitational field
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B121 (1977) 77 [INSPIRE].
[2] E. D’Hoker and D.H. Phong, Lectures on supersymmetric Yang-Mills theory and integrable systems, in 9th CRM Summer School: Theoretical Physics at the End of the 20th Century, pp. 1-125, 12, 1999 [hep-th/9912271] [INSPIRE]. · Zbl 1149.81355
[3] D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress Toward a Theory of Supergravity, Phys. Rev. D13 (1976) 3214 [INSPIRE].
[4] S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B62 (1976) 335 [INSPIRE].
[5] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012). · Zbl 1245.83001
[6] Arkani-Hamed, N.; Cachazo, F.; Kaplan, J., What is the Simplest Quantum Field Theory?, JHEP, 09, 016 (2010) · Zbl 1291.81356 · doi:10.1007/JHEP09(2010)016
[7] Gregoire, T.; Schwartz, MD; Shadmi, Y., Massive supergravity and deconstruction, JHEP, 07, 029 (2004) · doi:10.1088/1126-6708/2004/07/029
[8] Malaeb, O., Massive Gravity with N = 1 local Supersymmetry, Eur. Phys. J. C, 73, 2549 (2013) · doi:10.1140/epjc/s10052-013-2549-9
[9] Malaeb, O., Supersymmetrizing Massive Gravity, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.025002
[10] Ondo, NA; Tolley, AJ, Deconstructing Supergravity: Massive Supermultiplets, JHEP, 11, 082 (2018) · Zbl 1404.83138 · doi:10.1007/JHEP11(2018)082
[11] Del Monte, F.; Francia, D.; Grassi, PA, Multimetric Supergravities, JHEP, 09, 064 (2016) · Zbl 1390.83392 · doi:10.1007/JHEP09(2016)064
[12] Ferrara, S.; Lüst, D., Spin-four \(\mathcal{N} = 7 W\)-supergravity: S-fold and double copy construction, JHEP, 07, 114 (2018) · Zbl 1395.83124 · doi:10.1007/JHEP07(2018)114
[13] S. Ferrara, A. Kehagias and D. Lüst, Bimetric, Conformal Supergravity and its Superstring Embedding, JHEP05 (2019) 100 [arXiv:1810.08147] [INSPIRE]. · Zbl 1416.83140
[14] S. Ferrara, A. Kehagias and D. Lüst, Aspects of Conformal Supergravity, in 57th International School of Subnuclear Physics: In Search for the Unexpected, 1, 2020 [arXiv:2001.04998] [INSPIRE]. · Zbl 1396.83061
[15] M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A173 (1939) 211. · JFM 65.1532.01
[16] Alberte, L.; de Rham, C.; Momeni, A.; Rumbutis, J.; Tolley, AJ, Positivity Constraints on Interacting Spin-2 Fields, JHEP, 03, 097 (2020) · Zbl 1435.81113 · doi:10.1007/JHEP03(2020)097
[17] Hinterbichler, K.; Joyce, A.; Rosen, RA, Massive Spin-2 Scattering and Asymptotic Superluminality, JHEP, 03, 051 (2018) · Zbl 1388.83590 · doi:10.1007/JHEP03(2018)051
[18] Bonifacio, J.; Hinterbichler, K., Bounds on Amplitudes in Effective Theories with Massive Spinning Particles, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.045003
[19] Bonifacio, J.; Hinterbichler, K.; Rosen, RA, Constraints on a gravitational Higgs mechanism, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.084017
[20] Klaewer, D.; Lüst, D.; Palti, E., A Spin-2 Conjecture on the Swampland, Fortsch. Phys., 67, 1800102 (2019) · Zbl 1535.81177 · doi:10.1002/prop.201800102
[21] Karch, A.; Randall, L., Locally localized gravity, JHEP, 05, 008 (2001) · Zbl 1047.81062 · doi:10.1088/1126-6708/2001/05/008
[22] Karch, A.; Randall, L., Localized gravity in string theory, Phys. Rev. Lett., 87 (2001) · doi:10.1103/PhysRevLett.87.061601
[23] M. Porrati, Mass and gauge invariance 4. Holography for the Karch-Randall model, Phys. Rev. D65 (2002) 044015 [hep-th/0109017] [INSPIRE].
[24] Porrati, M., Higgs phenomenon for the graviton in AdS space, Mod. Phys. Lett. A, 18, 1793 (2003) · Zbl 1076.81553 · doi:10.1142/S0217732303011745
[25] Aharony, O.; DeWolfe, O.; Freedman, DZ; Karch, A., Defect conformal field theory and locally localized gravity, JHEP, 07, 030 (2003) · doi:10.1088/1126-6708/2003/07/030
[26] Duff, MJ; Liu, JT; Sati, H., Complementarity of the Maldacena and Karch-Randall pictures, Phys. Rev. D, 69 (2004) · Zbl 1101.83318 · doi:10.1103/PhysRevD.69.085012
[27] Aharony, O.; Clark, AB; Karch, A., The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.086006
[28] de Rham, C.; Tolley, AJ, Mimicking Lambda with a spin-two ghost condensate, JCAP, 07, 004 (2006) · doi:10.1088/1475-7516/2006/07/004
[29] Kiritsis, E.; Niarchos, V., Interacting String Multi-verses and Holographic Instabilities of Massive Gravity, Nucl. Phys. B, 812, 488 (2009) · Zbl 1194.83116 · doi:10.1016/j.nuclphysb.2008.12.010
[30] Apolo, L.; Porrati, M., On AdS/CFT without Massless Gravitons, Phys. Lett. B, 714, 309 (2012) · doi:10.1016/j.physletb.2012.07.001
[31] Gabadadze, G., The Big Constant Out, The Small Constant In, Phys. Lett. B, 739, 263 (2014) · Zbl 1306.83020 · doi:10.1016/j.physletb.2014.10.064
[32] Gabadadze, G.; Yu, S., Metamorphosis of the Cosmological Constant and 5D Origin of the Fiducial Metric, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.104059
[33] Domokos, SK; Gabadadze, G., Unparticles as the Holographic Dual of Gapped AdS Gravity, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.126011
[34] G. Gabadadze, Scale-up of Λ_3: Massive gravity with a higher strong interaction scale, Phys. Rev. D96 (2017) 084018 [arXiv:1707.01739] [INSPIRE].
[35] Bachas, C.; Lavdas, I., Massive Anti-de Sitter Gravity from String Theory, JHEP, 11, 003 (2018) · Zbl 1471.83021 · doi:10.1007/JHEP11(2018)003
[36] Buchbinder, IL; Gates, SJ Jr; Linch, WD III; Phillips, J., New 4-D, N = 1 superfield theory: Model of free massive superspin 3/2 multiplet, Phys. Lett. B, 535, 280 (2002) · Zbl 1001.81078 · doi:10.1016/S0370-2693(02)01772-0
[37] Y.M. Zinoviev, On Partially Massless Supergravity, Phys. Part. Nucl.49 (2018) 850 [INSPIRE].
[38] Y.M. Zinoviev, Massive spin two supermultiplets, hep-th/0206209 [INSPIRE]. · Zbl 1473.81105
[39] Gates, SJ Jr; Koutrolikos, K., A dynamical theory for linearized massive superspin 3/2, JHEP, 03, 030 (2014) · Zbl 1461.83094 · doi:10.1007/JHEP03(2014)030
[40] A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2007), doi:10.1017/CBO9780511535109 [INSPIRE]. · Zbl 1152.81001
[41] Elvang, H.; Freedman, DZ; Kiermaier, M., Solution to the Ward Identities for Superamplitudes, JHEP, 10, 103 (2010) · Zbl 1291.81243 · doi:10.1007/JHEP10(2010)103
[42] N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering amplitudes for all masses and spins, JHEP11 (2021) 070 [arXiv:1709.04891] [INSPIRE]. · Zbl 1521.81418
[43] Herderschee, A.; Koren, S.; Trott, T., Massive On-Shell Supersymmetric Scattering Amplitudes, JHEP, 10, 092 (2019) · Zbl 1427.81168 · doi:10.1007/JHEP10(2019)092
[44] de Rham, C.; Gabadadze, G.; Tolley, AJ, Resummation of Massive Gravity, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.231101
[45] Hinterbichler, K., Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671 (2012) · doi:10.1103/RevModPhys.84.671
[46] de Rham, C., Massive Gravity, Living Rev. Rel., 17, 7 (2014) · Zbl 1320.83018 · doi:10.12942/lrr-2014-7
[47] Cheung, C.; Remmen, GN, Positive Signs in Massive Gravity, JHEP, 04, 002 (2016) · Zbl 1388.83576
[48] D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D6 (1972) 3368 [INSPIRE].
[49] A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B39 (1972) 393 [INSPIRE].
[50] H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B22 (1970) 397 [INSPIRE].
[51] V.I. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett.12 (1970) 312 [INSPIRE].
[52] Babichev, E.; Deffayet, C., An introduction to the Vainshtein mechanism, Class. Quant. Grav., 30 (2013) · Zbl 1277.83002 · doi:10.1088/0264-9381/30/18/184001
[53] de Rham, C.; Heisenberg, L.; Ribeiro, RH, Quantum Corrections in Massive Gravity, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.084058
[54] X.O. Camanho, G. Lucena Gómez and R. Rahman, Causality Constraints on Massive Gravity, Phys. Rev. D96 (2017) 084007 [arXiv:1610.02033] [INSPIRE].
[55] Bonifacio, J.; Hinterbichler, K.; Joyce, A.; Rosen, RA, Massive and Massless Spin-2 Scattering and Asymptotic Superluminality, JHEP, 06, 075 (2018) · Zbl 1395.83083 · doi:10.1007/JHEP06(2018)075
[56] Bellazzini, B.; Riva, F.; Serra, J.; Sgarlata, F., Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.161101
[57] de Rham, C.; Melville, S.; Tolley, AJ; Zhou, S-Y, Positivity Bounds for Massive Spin-1 and Spin-2 Fields, JHEP, 03, 182 (2019) · Zbl 1414.81156 · doi:10.1007/JHEP03(2019)182
[58] de Rham, C.; Melville, S.; Tolley, AJ, Improved Positivity Bounds and Massive Gravity, JHEP, 04, 083 (2018) · Zbl 1390.83302 · doi:10.1007/JHEP04(2018)083
[59] S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev.135 (1964) B1049 [INSPIRE]. · Zbl 0144.23702
[60] S. Ferrara, C.A. Savoy and B. Zumino, General Massive Multiplets in Extended Supersymmetry, Phys. Lett. B100 (1981) 393 [INSPIRE].
[61] S. Ferrara and C.A. Savoy, Representations of Extended Supersymmetry on One and Two Particle States, in First School on Supergravity, (1981).
[62] N. Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building, arXiv:1511.08771 [INSPIRE]. · Zbl 07406614
[63] H. Georgi, Lie Algebras in Particle Physics: From Isospin to Unified Theories, vol. 54, CRC Press (1982). · Zbl 0505.00036
[64] M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S Matrix, Phys. Rev. D15 (1977) 996 [INSPIRE].
[65] M.T. Grisaru and H.N. Pendleton, Some Properties of Scattering Amplitudes in Supersymmetric Theories, Nucl. Phys. B124 (1977) 81 [INSPIRE].
[66] Elvang, H.; Freedman, DZ; Kiermaier, M., SUSY Ward identities, Superamplitudes, and Counterterms, J. Phys. A, 44 (2011) · Zbl 1270.81135 · doi:10.1088/1751-8113/44/45/454009
[67] V.P. Nair, A Current Algebra for Some Gauge Theory Amplitudes, Phys. Lett. B214 (1988) 215 [INSPIRE].
[68] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys., 252, 189 (2004) · Zbl 1105.81061 · doi:10.1007/s00220-004-1187-3
[69] Boels, RH; Schwinn, C., On-shell supersymmetry for massive multiplets, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.065006
[70] Herderschee, A.; Koren, S.; Trott, T., Constructing \(\mathcal{N} = 4\) Coulomb branch superamplitudes, JHEP, 08, 107 (2019) · Zbl 1421.81149 · doi:10.1007/JHEP08(2019)107
[71] C. Arzt, Reduced effective Lagrangians, Phys. Lett. B342 (1995) 189 [hep-ph/9304230] [INSPIRE].
[72] Lüst, D.; Markou, C.; Mazloumi, P.; Stieberger, S., Extracting bigravity from string theory, JHEP, 12, 220 (2021) · Zbl 1521.83188 · doi:10.1007/JHEP12(2021)220
[73] De Rham, C.; Hinterbichler, K.; Johnson, LA, On the (A)dS Decoupling Limits of Massive Gravity, JHEP, 09, 154 (2018) · Zbl 1398.83093 · doi:10.1007/JHEP09(2018)154
[74] J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D10 (1974) 1145 [Erratum ibid.11 (1975) 972] [INSPIRE].
[75] C.E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim.17 (1976) 383 [INSPIRE].
[76] B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D16 (1977) 1519 [INSPIRE].
[77] de Rham, C.; Gabadadze, G., Generalization of the Fierz-Pauli Action, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.044020
[78] Goon, G.; Hinterbichler, K.; Joyce, A.; Trodden, M., Galileons as Wess-Zumino Terms, JHEP, 06, 004 (2012) · doi:10.1007/JHEP06(2012)004
[79] Arkani-Hamed, N.; Georgi, H.; Schwartz, MD, Effective field theory for massive gravitons and gravity in theory space, Annals Phys., 305, 96 (2003) · Zbl 1022.81035 · doi:10.1016/S0003-4916(03)00068-X
[80] Schwartz, MD, Constructing gravitational dimensions, Phys. Rev. D, 68 (2003) · doi:10.1103/PhysRevD.68.024029
[81] Hassan, SF; Rosen, RA, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.041101
[82] Tolley, AJ; Wang, Z-Y; Zhou, S-Y, New positivity bounds from full crossing symmetry, JHEP, 05, 255 (2021) · doi:10.1007/JHEP05(2021)255
[83] Ferrara, S.; Kehagias, A.; Lüst, D., Aspects of Weyl Supergravity, JHEP, 08, 197 (2018) · Zbl 1396.83061 · doi:10.1007/JHEP08(2018)197
[84] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B269 (1986) 1 [INSPIRE].
[85] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].
[86] Johansson, H.; Ochirov, A., Double copy for massive quantum particles with spin, JHEP, 09, 040 (2019) · Zbl 1423.81183 · doi:10.1007/JHEP09(2019)040
[87] Momeni, A.; Rumbutis, J.; Tolley, AJ, Kaluza-Klein from colour-kinematics duality for massive fields, JHEP, 08, 081 (2021) · Zbl 1469.83033 · doi:10.1007/JHEP08(2021)081
[88] Moynihan, N., Scattering Amplitudes and the Double Copy in Topologically Massive Theories, JHEP, 12, 163 (2020) · Zbl 1457.83016 · doi:10.1007/JHEP12(2020)163
[89] González, MC; Momeni, A.; Rumbutis, J., Massive double copy in three spacetime dimensions, JHEP, 08, 116 (2021) · Zbl 1469.81045 · doi:10.1007/JHEP08(2021)116
[90] N. Moynihan, Massive Covariant Colour-Kinematics in 3D, arXiv:2110.02209 [INSPIRE].
[91] González, MC; Momeni, A.; Rumbutis, J., Massive double copy in the high-energy limit, JHEP, 04, 094 (2022) · Zbl 1522.81551 · doi:10.1007/JHEP04(2022)094
[92] González, MC; Liang, Q.; Trodden, M., Double copy for massive scalar field theories, JHEP, 08, 098 (2022) · Zbl 1522.81227 · doi:10.1007/JHEP08(2022)098
[93] Momeni, A.; Rumbutis, J.; Tolley, AJ, Massive Gravity from Double Copy, JHEP, 12, 030 (2020) · Zbl 1457.83051 · doi:10.1007/JHEP12(2020)030
[94] Johnson, LA; Jones, CRT; Paranjape, S., Constraints on a Massive Double-Copy and Applications to Massive Gravity, JHEP, 02, 148 (2021) · Zbl 1460.83068 · doi:10.1007/JHEP02(2021)148
[95] Chi, H-H; Elvang, H.; Herderschee, A.; Jones, CRT; Paranjape, S., Generalizations of the double-copy: the KLT bootstrap, JHEP, 03, 077 (2022) · Zbl 1522.81202 · doi:10.1007/JHEP03(2022)077
[96] Abhishek, M.; Hegde, S.; Jatkar, DP; Saha, AP, Scattering Amplitudes and BCFW in \(\mathcal{N} = 2\)^∗Theory, SciPost Phys., 13, 008 (2022) · doi:10.21468/SciPostPhys.13.1.008
[97] N. Seiberg, The Power of holomorphy: Exact results in 4 − D SUSY field theories, in Particles, Strings, and Cosmology (PASCOS 94), pp. 0357-369, 5, 1994 [hep-th/9408013] [INSPIRE].
[98] Hinterbichler, K., Ghost-Free Derivative Interactions for a Massive Graviton, JHEP, 10, 102 (2013) · Zbl 1342.83299 · doi:10.1007/JHEP10(2013)102
[99] Bonifacio, J.; Hinterbichler, K.; Johnson, LA, Pseudolinear spin-2 interactions, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.024037
[100] Bonifacio, J.; Hinterbichler, K., Universal bound on the strong coupling scale of a gravitationally coupled massive spin-2 particle, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.085006
[101] de Rham, C.; Renaux-Petel, S., Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity, JCAP, 01, 035 (2013) · doi:10.1088/1475-7516/2013/01/035
[102] de Rham, C.; Hinterbichler, K.; Rosen, RA; Tolley, AJ, Evidence for and obstructions to nonlinear partially massless gravity, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.024003
[103] A. Higuchi, Forbidden Mass Range for Spin-2 Field Theory in de Sitter Space-time, Nucl. Phys. B282 (1987) 397 [INSPIRE].
[104] Babichev, E.; Brito, R., Black holes in massive gravity, Class. Quant. Grav., 32 (2015) · Zbl 1327.83135 · doi:10.1088/0264-9381/32/15/154001
[105] Babichev, E.; Fabbri, A., A class of charged black hole solutions in massive (bi)gravity, JHEP, 07, 016 (2014) · doi:10.1007/JHEP07(2014)016
[106] E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett. B76 (1978) 409 [INSPIRE]. · Zbl 1156.83327
[107] E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B159 (1979) 141 [INSPIRE].
[108] de Rham, C.; Matas, A.; Tolley, AJ, Deconstructing Dimensions and Massive Gravity, Class. Quant. Grav., 31 (2014) · Zbl 1292.83050 · doi:10.1088/0264-9381/31/2/025004
[109] Arkani-Hamed, N.; Cohen, AG; Georgi, H., (De)constructing dimensions, Phys. Rev. Lett., 86, 4757 (2001) · doi:10.1103/PhysRevLett.86.4757
[110] Arkani-Hamed, N.; Schwartz, MD, Discrete gravitational dimensions, Phys. Rev. D, 69 (2004) · Zbl 1405.83011 · doi:10.1103/PhysRevD.69.104001
[111] Falkowski, A.; Isabella, G., Matter coupling in massive gravity, JHEP, 04, 014 (2020) · Zbl 1436.83059 · doi:10.1007/JHEP04(2020)014
[112] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94 (2005) · doi:10.1103/PhysRevLett.94.181602
[113] Drummond, JM; Henn, JM, All tree-level amplitudes in N = 4 SYM, JHEP, 04, 018 (2009) · doi:10.1088/1126-6708/2009/04/018
[114] Badger, SD; Glover, EWN; Khoze, VV; Svrček, P., Recursion relations for gauge theory amplitudes with massive particles, JHEP, 07, 025 (2005) · doi:10.1088/1126-6708/2005/07/025
[115] C. Schwinn and S. Weinzierl, On-shell recursion relations for all Born QCD amplitudes, JHEP04 (2007) 072 [hep-ph/0703021] [INSPIRE].
[116] Arkani-Hamed, N.; Kaplan, J., On Tree Amplitudes in Gauge Theory and Gravity, JHEP, 04, 076 (2008) · Zbl 1246.81103 · doi:10.1088/1126-6708/2008/04/076
[117] H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE]. · Zbl 1332.81010
[118] Khoury, J.; Lehners, J-L; Ovrut, BA, Supersymmetric Galileons, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.043521
[119] Koehn, M.; Lehners, J-L; Ovrut, B., Supersymmetric cubic Galileons have ghosts, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.023528
[120] Farakos, F.; Germani, C.; Kehagias, A., On ghost-free supersymmetric galileons, JHEP, 11, 045 (2013) · Zbl 1342.83471 · doi:10.1007/JHEP11(2013)045
[121] Elvang, H.; Hadjiantonis, M.; Jones, CRT; Paranjape, S., On the Supersymmetrization of Galileon Theories in Four Dimensions, Phys. Lett. B, 781, 656 (2018) · Zbl 1398.81240 · doi:10.1016/j.physletb.2018.04.032
[122] Elvang, H.; Hadjiantonis, M.; Jones, CRT; Paranjape, S., Soft Bootstrap and Supersymmetry, JHEP, 01, 195 (2019) · Zbl 1409.81146 · doi:10.1007/JHEP01(2019)195
[123] H. Elvang and M.D. Mitchell, On Extended Supersymmetry of 4d Galileons and 3-Brane Effective Actions, arXiv:2111.12686 [INSPIRE].
[124] M. Srednicki, Quantum field theory, Cambridge University Press, Cambridge, U.K. (2007). · Zbl 1113.81002
[125] Dreiner, HK; Haber, HE; Martin, SP, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept., 494, 1 (2010) · doi:10.1016/j.physrep.2010.05.002
[126] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press, Cambridge, U.K. (2005). · Zbl 1069.00007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.