×

Unconditional convergence of conservative spectral Galerkin methods for the coupled fractional nonlinear Klein-Gordon-Schrödinger equations. (English) Zbl 1534.65202

Summary: In this work, two novel classes of structure-preserving spectral Galerkin methods are proposed which based on the Crank-Nicolson scheme and the exponential scalar auxiliary variable method respectively, for solving the coupled fractional nonlinear Klein-Gordon-Schrödinger equation. The paper focuses on the theoretical analyses and computational efficiency of the proposed schemes, the Crank-Nicoloson scheme is proved to be unconditionally convergent and has maximum-norm boundness of numerical solutions. The exponential scalar auxiliary variable scheme is linearly implicit and decoupled, but lack of the maximum-norm boundness, also, the energy structure is modified. Subsequently, the efficient implementations of the proposed schemes are introduced in detail. Both the theoretical analyses and the numerical comparisons show that the proposed spectral Galerkin methods have high efficiency in long-time computations.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35Q55 NLS equations (nonlinear Schrödinger equations)

Software:

LIMbook

References:

[1] Alfimov, G.; Pierantozzi, T.; Vázquez, L., Numerical study of a fractional sine-Gordon equation, Fract. Differ. Appl., 4, 153-162 (2004)
[2] Ainsworth, M.; Mao, Z., Analysis and approximation of a fractional Cahn-Hilliard equation, SIAM J. Numer. Anal., 55, 1689-1718 (2017) · Zbl 1369.65124 · doi:10.1137/16M1075302
[3] An, J.; Cao, W.; Zhang, Z., An efficient spectral Petrov-Galerkin method for nonlinear Hamiltonian systems, Commun. Comput. Phys., 26, 1249-1273 (2019) · Zbl 1473.65228 · doi:10.4208/cicp.2019.js60.11
[4] Browder, F.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. In: Application of Nonlinear Partial Differential Equations. Proceedings of Symposia in Applied Mathematics, vol. 17, pp. 24-49 (1965) · Zbl 0145.35302
[5] Boulenger, T.; Himmelsbach, D.; Lenzmann, E., Blowup for fractional NLS, J. Funct. Anal., 271, 2569-2603 (2016) · Zbl 1348.35038 · doi:10.1016/j.jfa.2016.08.011
[6] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), Boca Raton: Chapman Hall/CRC, Boca Raton · Zbl 1335.65097 · doi:10.1201/b19319
[7] Bao, W.; Zhao, X., A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime, Numer. Math., 135, 833-873 (2017) · Zbl 1361.65080 · doi:10.1007/s00211-016-0818-x
[8] Feng, K.; Qin, M., Symplectic Geometric Algorithms for Hamiltonian Systems (2010), Berlin: Springer, Berlin · Zbl 1207.65149 · doi:10.1007/978-3-642-01777-3
[9] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb. Sect. A, 142, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[10] Fu, H.; Liu, H.; Wang, H., A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation, J. Comput. Phys., 388, 316-334 (2019) · Zbl 1452.65189 · doi:10.1016/j.jcp.2019.03.030
[11] Feng, X.; Liu, H.; Ma, S., Mass- and energy-conserved numerical schemes for nonlinear Schrödinger equations, Commun. Comput. Phys., 26, 1365-1396 (2019) · Zbl 1473.65102 · doi:10.4208/cicp.2019.js60.05
[12] Fu, Y.; Cai, W.; Wang, Y., Structure-preserving algorithms for the two-dimensional fractional Klein-Gordon-Schrödinger equation, Appl. Numer. Math., 156, 77-93 (2020) · Zbl 1442.65219 · doi:10.1016/j.apnum.2020.04.011
[13] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Berlin: Springer, Berlin · Zbl 1094.65125
[14] Hajaiej, H.; Yu, X.; Zhai, Z., Fractional Gagliardo-Nirenberg and hardy inequalities under Lorentz norms, J. Math. Anal. Appl., 396, 569-577 (2012) · Zbl 1254.26010 · doi:10.1016/j.jmaa.2012.06.054
[15] Huang, J.; Nie, N.; Tang, Y., A second order finite difference-spectral method for space fractional diffusion equations, Sci. China Math., 57, 1303-1317 (2014) · Zbl 1305.65185 · doi:10.1007/s11425-013-4716-8
[16] Hu, D.; Cai, W.; Song, Y.; Wang, Y., A fourth-order dissipation-preserving algorithm with fast implementation for space fractional nonlinear damped wave equations, Commun. Nonlinear Sci. Numer. Simul., 91 (2020) · Zbl 1448.65105 · doi:10.1016/j.cnsns.2020.105432
[17] Hu, D.; Cai, W.; Gu, X.; Wang, Y., Efficient energy preserving Galerkin-Legendre spectral methods for fractional nonlinear Schrödinger equation with wave operator, Appl. Numer. Math., 172, 608-628 (2022) · Zbl 1484.65223 · doi:10.1016/j.apnum.2021.10.013
[18] Ionescu, A.; Pusateri, F., Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266, 139-176 (2014) · Zbl 1304.35749 · doi:10.1016/j.jfa.2013.08.027
[19] Kirkpatrick, K.; Lenzmann, E.; Staffilani, G., On the continuum limit for discrete NLS with long-range lattice interactions, Commun. Math. Phys., 317, 563-591 (2013) · Zbl 1258.35182 · doi:10.1007/s00220-012-1621-x
[20] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett., 268, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[21] Longhi, S., Fractional Schrödinger equation in optics, Opt. Lett., 40, 1117-1120 (2015) · doi:10.1364/OL.40.001117
[22] Lu, K.; Wang, B., Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differ. Equ., 170, 281-316 (2001) · Zbl 0979.35135 · doi:10.1006/jdeq.2000.3827
[23] Li, M.; Huang, C.; Zhao, Y., Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation, Numer. Algorithm, 84, 1081-1119 (2020) · Zbl 1442.65168 · doi:10.1007/s11075-019-00793-9
[24] Liu, Z.; Li, X., The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing, SIAM J. Sci. Comput., 42, B630-B655 (2020) · Zbl 1447.65057 · doi:10.1137/19M1305914
[25] Mendez, A., On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation, J. Differ. Equ., 269, 9051-9089 (2020) · Zbl 1450.35236 · doi:10.1016/j.jde.2020.06.027
[26] Macías-Díaz, J., Existence of solutions of an explicit energy-conserving scheme for a fractional Klein-Gordon-Zakharov system, Appl. Numer. Math., 151, 40-43 (2020) · Zbl 1433.65161 · doi:10.1016/j.apnum.2019.12.021
[27] Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[28] Quispel, G.; McLaren, D., A new class of energy-preserving numerical integration methods, J. Phys. A Math. Theor., 41 (2008) · Zbl 1132.65065 · doi:10.1088/1751-8113/41/4/045206
[29] Roop, J.: Variational Solution of the fractional advection dispersion equation. Ph.D. thesis, Clemson University, Clemson, SC (2004)
[30] Shen, J.; Tang, T.; Wang, L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer, Heidelberg: Springer, Springer, Heidelberg · Zbl 1227.65117 · doi:10.1007/978-3-540-71041-7
[31] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353, 407-416 (2018) · Zbl 1380.65181 · doi:10.1016/j.jcp.2017.10.021
[32] Shi, Y.; Ma, Q.; Ding, X., A new energy-preserving scheme for the fractional Klein-Gordon-Schrödinger equations, Adv. Appl. Math. Mech., 11, 1219-1247 (2019) · Zbl 1488.35576 · doi:10.4208/aamm.OA-2018-0157
[33] Shi, Q.; Zhang, X.; Wang, C.; Wang, S., Finite time blowup for Klein-Gordon-Schrödinger system, Math. Methods Appl. Sci., 42, 3929-3941 (2019) · Zbl 1428.35057 · doi:10.1002/mma.5621
[34] Wang, B.; Lange, H., Attractors for the Klein-Gordon-Schrödinger equation, J. Math. Phys., 40, 2445-2457 (1999) · Zbl 0949.35126 · doi:10.1063/1.532875
[35] Wang, Y.; Wang, B.; Qin, M., Local structure-preserving algorithms for partial differential equations, Sci. China Ser. A Math., 51, 2115-2136 (2008) · Zbl 1179.65115 · doi:10.1007/s11425-008-0046-7
[36] Wang, P.; Huang, C., An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293, 238-251 (2015) · Zbl 1349.65346 · doi:10.1016/j.jcp.2014.03.037
[37] Wang, Y.; Mei, L., A conservative spectral Galerkin method for the coupled nonlinear space-fractional Schrödinger equations, Int. J. Comput. Math., 96, 2387-2410 (2019) · Zbl 1499.65442 · doi:10.1080/00207160.2018.1563687
[38] Yang, X.; Ju, L., Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model, Comput. Methods Appl. Mech. Eng., 315, 691-712 (2017) · Zbl 1439.74165 · doi:10.1016/j.cma.2016.10.041
[39] Zhou, Y., Application of Discrete Functional Analysis to the Finite Difierence Methods (1990), Beijing: International Academic Publishers, Beijing
[40] Zhao, X.; Sun, Z.; Hao, Z., A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., 36, A2865-A2886 (2014) · Zbl 1328.65187 · doi:10.1137/140961560
[41] Zeng, F.; Liu, F.; Li, C.; Burrage, K.; Turner, I.; Anh, V., A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52, 2599-2622 (2014) · Zbl 1382.65349 · doi:10.1137/130934192
[42] Zhang, Y.; Shen, J., Efficient structure preserving schemes for the Klein-Gordon-Schrödinger equations, J. Sci. Comput., 89, 47 (2021) · Zbl 1477.35198 · doi:10.1007/s10915-021-01649-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.