×

Formation of infinite loops for an interacting bosonic loop soup. (English) Zbl 1534.60141

Summary: We compute the limiting measure for the Feynman loop representation of the Bose gas for a non mean-field energy. As predicted in previous works, for high densities the limiting measure gives positive weight to random interlacements, indicating the quantum Bose-Einstein condensation. We prove that in many cases there is a shift in the critical density compared to the free/mean-field case, and that in these cases the density of the random interlacements has a jump-discontinuity at the critical point.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F10 Large deviations
60J65 Brownian motion
60G50 Sums of independent random variables; random walks

References:

[1] S. Adams, A Collevecchio, and W. König. A variational formula for the free energy of an interacting many-particle system. Annals of Probability, 39(2):683-728, 2011. MathSciNet: MR2789510 · Zbl 1225.60147
[2] S. Adams and M. Dickson. An explicit large deviation analysis of the spatial cycle Huang-Yang-Luttinger model. Annales Henri Poincaré, 22(5):1535-1560, 2021. MathSciNet: MR4250742 · Zbl 1481.60063
[3] S. Adams and M. Dickson. Large deviations analysis for random combinatorial partitions with counter terms. J. Phys. A, 55:255001, 2022. MathSciNet: MR4438639 · Zbl 1507.60037
[4] I. Armendáriz, P. Ferrari, and S. Yuhjtman. Gaussian random permutation and the boson point process. Communications in Mathematical Physics, 387(3):1515-1547, 2021. MathSciNet: MR4324384 · Zbl 1489.82034
[5] S. Adams and Q. Vogel. Space-time random walk loop measures. Stochastic Processes and their Applications, 130(4):2086-2126, 2020. MathSciNet: MR4074689 · Zbl 1440.60082
[6] M. van den Berg, T. Dorlas, J. Lewis, and J. Pulé. The pressure in the Huang-Yang-Luttinger model of an interacting boson gas. Communications in Mathematical Physics, 128(2):231-245, 1990. MathSciNet: MR1043519 · Zbl 0693.60089
[7] Q. Berger. Notes on random walks in the Cauchy domain of attraction. Probability Theory and Related Fields, 175(1):1-44, 2019. MathSciNet: MR4009704 · Zbl 1479.60086
[8] N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular Variation. Number 1 in Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1989. MathSciNet: MR1015093 · Zbl 0667.26003
[9] Billingsley, P. Convergence of Probability Measures. Wiley Series in Probability and Mathematical Statistics. Wiley, 1968. MathSciNet: MR0534323 · Zbl 0172.21201
[10] S. Bose. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik, 1924.
[11] R. Bahadur and R. Rao. On deviations of the sample mean. The Annals of Mathematical Statistics, 31(4):1015-1027, 1960. MathSciNet: MR0117775 · Zbl 0101.12603
[12] O. Bratteli and D. Robinson. Operator Algebras and Quantum Statistical Mechanics: Equilibrium States. Models in quantum statistical mechanics. Theoretical and Mathematical Physics. Springer Berlin Heidelberg, 2003. MathSciNet: MR0611508
[13] V. Betz and D. Ueltschi. Spatial random permutations and infinite cycles. Communications in Mathematical Physics, 285(2):469-501, 2009. MathSciNet: MR2461985 · Zbl 1155.82022
[14] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth. On the Lambert W function. Advances in Computational mathematics, 5(1):329-359, 1996. MathSciNet: MR1414285 · Zbl 0863.65008
[15] F. Comets, S. Popov, and M. Vachkovskaia. Two-dimensional random interlacements and late points for random walks. Communications in Mathematical Physics, 343(1):129-164, 2016. MathSciNet: MR3475663 · Zbl 1336.60185
[16] A. Drewitz, B. Ráth, and A. Sapozhnikov. An Introduction to Random Interlacements. Springer, 2014. MathSciNet: MR3308116 · Zbl 1304.60008
[17] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg, 2009. MathSciNet: MR2571413
[18] A. Einstein. Quantentheorie des einatomigen idealen Gases, 1925. · JFM 51.0755.04
[19] R. Feynman. Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics, 20(2):367-387, 1948. MathSciNet: MR0026940 · Zbl 1371.81126
[20] R. Feynman. Atomic theory of the \(λ\) transition in helium. Physical Review, 91(6):1291, 1953. · Zbl 0053.48001
[21] R. Feynman. Statistical Mechanics. Benjamin, Reading, MA, 1972. MathSciNet: MR1634071
[22] H. Georgii. The equivalence of ensembles for classical systems of particles. Journal of Statistical Physics, 80(5):1341-1378, 1995. MathSciNet: MR1349785 · Zbl 1081.82504
[23] K. Huang and C. Yang. Quantum-mechanical many-body problem with hard-sphere interaction. Physical Review, 105(3):767, 1957. MathSciNet: MR0083377 · Zbl 0077.20905
[24] K. Huang, C. Yang, and J. Luttinger. Imperfect Bose gas with hard-sphere interaction. Physical Review, 105(3):776, 1957. MathSciNet: MR0084264 · Zbl 0077.21001
[25] A. Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer London, 2013. MathSciNet: MR3112259
[26] J. Lewis. Why do Bosons condense? In Statistical Mechanics and Field Theory: Mathematical Aspects, pages 234-256. Springer, 1986. MathSciNet: MR0862838 · Zbl 0621.76135
[27] G. Last and M. Penrose. Lectures on the Poisson Process, volume 7. Cambridge University Press, 2017. MathSciNet: MR3791470
[28] O. Macchi. The coincidence approach to stochastic point processes. Advances in Applied Probability, 7(1):83-122, 1975. MathSciNet: MR0380979 · Zbl 0366.60081
[29] A. Martin-Löf. A Laplace approximation for sums of independent random variables. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 59(1):101-115, 1982. MathSciNet: MR0643791 · Zbl 0473.60036
[30] P. Mörters and Y. Peres. Brownian Motion. Cambridge University Press, 2010. MathSciNet: MR2604525 · Zbl 1243.60002
[31] D. Ruelle. Statistical Mechanics: Rigorous Results. Addison-Wesley, 1969. MathSciNet: MR0289084 · Zbl 0177.57301
[32] A. Sütő. Percolation transition in the Bose gas. Journal of Physics. A, Mathematical and General, 26(18):4689-4710, 1993. MathSciNet: MR1241339
[33] A. Sütő. Percolation transition in the Bose gas: II. Journal of Physics A: Mathematical and General, 35(33):6995, 2002. MathSciNet: MR1945163 · Zbl 1066.82006
[34] A. Sznitman. Vacant set of random interlacements and percolation. Annals of Mathematics, 2010. MathSciNet: MR2680403
[35] A. Sznitman. On scaling limits and Brownian interlacements. Bulletin of the Brazilian Mathematical Society, New Series, 44(4):555-592, 2013. MathSciNet: MR3167123 · Zbl 1303.60022
[36] K. Uchiyama. The Brownian hitting distributions in space-time of bounded sets and the expected volume of the Wiener sausage for a Brownian bridge. Proceedings of the London Mathematical Society, 116(3):575-628, 2018. MathSciNet: MR3772617 · Zbl 1391.60204
[37] D. Ueltschi. Feynman cycles in the Bose gas. Journal of Mathematical Physics, 47(12):123303, 2006. MathSciNet: MR2285149 · Zbl 1112.82028
[38] Q. Vogel. Emergence of interlacements from the finite volume Bose soup. Stochastic Processes and their Applications, 104227, 2023. MathSciNet: MR4654047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.