×

Distributed extended state observer-based fault-tolerant control for nonlinear multi-agent systems with switching topologies. (English) Zbl 1533.93235

Summary: In this paper, a novel fault-tolerant control scheme is designed and analyzed for multi-agent systems (MASs) with incipient faults, disturbances, parameter uncertainties, time delay, and nonlinear terms, and the proposed MAS with switching communication topologies. Firstly, the proposed distributed extended state observer estimates the incipient fault and system states in follower agents, which extends the incipient fault vector to a new system state. Meanwhile, the designed observer considers the output errors of itself and other agents. Further, a state estimation feedback-based fault-tolerant controller is constructed, composed of a delay estimator and a non-delay estimator to guarantee the proposed MASs have good operation performance. Then, some stability analysis conclusions of the MAS with incipient faults, time delay, disturbances, parameter uncertainties, and nonlinear terms are obtained. The proposed results can also be applied to practical systems like the wireless power transfer system. Finally, two simulation results are provided to demonstrate the effectiveness of the proposed fault-tolerant control technique.
© 2023 John Wiley & Sons Ltd.

MSC:

93B53 Observers
93B35 Sensitivity (robustness)
93C10 Nonlinear systems in control theory
93B24 Topological methods
93A16 Multi-agent systems
Full Text: DOI

References:

[1] TanakaR, TakahashiH. Multi‐agent simulation approach of pedestrian flow with group walking models. ICIC Exp Lett Pt B Appl. 2020;11(4):363‐371.
[2] ZhangX, SunY, ZhangY, SuS. Multi‐agent modelling and situational awareness analysis of human‐computer interaction in the aircraft cockpit: a case study. Simul Model Pract Theory. 2021;111:102355.
[3] OtaJ. Multi‐agent robot systems as distributed autonomous systems. Adv Eng Inform. 2006;20(1):59‐70.
[4] ChenJ, CaoX, ChengP, XiaoY, SunY. Distributed collaborative control for industrial automation with wireless sensor and actuator networks. IEEE Trans Ind Electron. 2010;57(12):4219‐4230.
[5] NiuG, HanT, YangB, ChiowTanA. Multi‐agent decision fusion for motor fault diagnosis. Mech Syst Signal Process. 2007;21(3):1285‐1299.
[6] XiaoS, DongJ. Distributed fault‐tolerant containment control for linear heterogeneous multiagent systems: a hierarchical design approach. IEEE Trans Cybern. 2022;52(2):971‐981.
[7] YaoL, WuY. Robust fault diagnosis and fault‐tolerant control for uncertain multiagent systems. Int J Robust Nonlinear Control. 2020;30(18):8192‐8205. · Zbl 1525.93059
[8] HeoJS, LeeKY. A multi‐agent system‐based intelligent identification system for power plant control and fault‐diagnosis. 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 2006, 6. doi: 10.1109/PES.2006.1709612.
[9] GallehdariZ, MeskinN, KhorasaniK. Distributed reconfigurable control strategies for switching topology networked multi‐agent systems. ISA Trans. 2017;71(1):51‐67.
[10] MehrabianAR, KhorasaniK, TafazoliS. Reconfigurable synchronization control of networked Euler‐Lagrange systems with switching communication topologies. Asia J Control. 2014;16(3):830‐844. · Zbl 1302.93010
[11] WangY, SongY, LewisFL. Robust adaptive fault‐tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures. IEEE Trans Ind Electron. 2015;62(6):3978‐3988.
[12] SunS, ZhangH, ZhangJ, YuL, SunJ. Multiple delay‐dependent robust
[( H\infty \]\) finite‐time filtering for uncertain Ito stochastic Takagi‐Sugeno fuzzy semi‐Markovian jump systems with state constraints. IEEE Trans Fuzzy Syst. 2022;30(2):321‐331.
[13] SunS, ZhangH, LiuC, LiuY. Dissipativity‐based intermittent fault detection and tolerant control for multiple delayed uncertain switched fuzzy stochastic systems with unmeasurable premise variables. IEEE Trans Cybern. 2022;52(9):8766‐8780.
[14] WangJ, LiangK, HuangX, WangZ, ShenH. Dissipative fault‐tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedbacks. Appl Math Comput. 2018;328(1):247‐262. · Zbl 1427.93197
[15] MenezesMoratoM, SenameO, DugardL. Design and analysis of several state‐feedback fault‐tolerant control strategies for semi‐active suspensions. IFAC Symp Syst Struct Control. 2019;52(17):48‐53.
[16] ShenJ, KungF. Memoryless linear state or state estimation feedback control for uncertain dynamic delay systems. Proceedings. ICCON IEEE International Conference on Control and Applications, Jerusalem, 1989, 798‐800. doi:10.1109/ICCON.1989.770631
[17] LaustererG, RayW. Distributed parameter state estimation and optimal feedback control‐an experimental study in two space dimensions. IEEE Trans Automat Control. 1979;24(2):179‐190. · Zbl 0418.93078
[18] LiuT, JiangZ. Distributed output‐feedback control of nonlinear multi‐agent systems. IEEE Trans Automat Control. 2013;58(11):2912‐2917. · Zbl 1369.93264
[19] RenY, ZhangK, JiangB, ChengW, DingY. Distributed fault‐tolerant time‐varying formation control of heterogeneous multi‐agent systems. Int J Robust Nonlinear Control. 2022;32(5):2864‐2882. · Zbl 1527.93220
[20] CaiY, ZhangH, ZhangJ, SunS, HeQ. Distributed fault‐tolerant output regulation for heterogeneous linear multi‐agent systems under actuator faults. J Franklin Inst. 2021;358(7):3303‐3331. · Zbl 1464.93018
[21] ZuoZ, ZhangJ, WangY. Adaptive fault‐tolerant tracking control for linear and Lipschitz nonlinear multi‐agent systems. IEEE Trans Ind Electron. 2015;62(6):3923‐3931.
[22] wangX, YangG. Cooperative adaptive fault‐tolerant tracking control for a class of multi‐agent systems with actuator failures and mismatched parameter uncertainties. IET Control Theory Appl. 2015;9(8):1274‐1284.
[23] LiK, LiY. Fuzzy adaptive optimal consensus fault‐tolerant control for stochastic nonlinear multi‐agent systems. IEEE Trans Fuzzy Syst. 2022;30(8):2870‐2885.
[24] HeS, WuY, LiY. Non‐fragile sampled‐data control of network systems subject to time‐delay. Int J Syst Sci. 2019;50(4):843‐857. · Zbl 1482.93363
[25] HeS, XuY, WuY, LiY, ZhongW. Adaptive consensus tracking of multi‐robotic systems via using integral sliding mode control. Neurocomputing. 2021;455:154‐162.
[26] WangD, WangZ, WenC. Distributed optimal consensus control for a class of uncertain nonlinear multiagent networks with disturbance rejection using adaptive technique. IEEE Trans Syst Man Cybern Syst. 2021;7(51):4389‐4399.
[27] WangZ, WangD, GuD. Distributed optimal state consensus for multiple circuit systems with disturbance rejection. IEEE Trans Netw Sci Eng. 2020;7(4):2926‐2939.
[28] LiuL, ZhuC, LiuY, TongS. Intelligent motion tracking control of vehicle suspension systems with constraints via neural performance analysis. IEEE Trans Intell Transport Syst. 2022;23(8):13896‐13903.
[29] LiuY, ZhaoW, LiuL, LiD, TongS, ChenCLP. Adaptive neural network control for a class of nonlinear systems with function constraints on states. IEEE Trans Neural Netw Learn Syst. 2023;34(6):2732‐2741.
[30] ZhangA, DengC. Fuzzy adaptive fault‐tolerant control for non‐identifiable multi‐agent systems under switching topology. Int J Fuzzy Syst. 2020;22:2246‐2257.
[31] SaderM, ChenZ, LiuZ, DengC. Distributed robust fault‐tolerant consensus control for a class of nonlinear multi‐agent systems with intermittent communications. Appl Math Comput. 2021;403:126166. · Zbl 1510.93024
[32] LiK, HuaC, YouX. Distributed asynchronous consensus control for nonlinear multiagent systems under switching topologies. IEEE Trans Automat Control. 2021;66(9):4327‐4333. · Zbl 1471.93248
[33] ZhangH, CaiY, WangY, SuH. Adaptive bipartite event‐triggered output consensus of heterogeneous linear multiagent systems under fixed and switching topologies. IEEE Trans Neural Netw Learn Syst. 2020;31(11):4816‐4830.
[34] CaiJ, FengJ, WangJ, ZhaoY. Tracking consensus of multi‐agent systems under switching topologies via novel SMC: an event‐triggered approach. IEEE Trans Netw Sci Eng. 2022;9(4):2150‐2163.
[35] ChuH, ChenJ, YueD, DouC. Observer‐based consensus of nonlinear multiagent systems with relative state estimate constraints. IEEE Trans Syst Man Cybern‐Syst. 2020;50(7):C2456‐C2465.
[36] XiJ, FanZ, LiuH, ZhengT. Guaranteed‐cost consensus for multiagent networks with Lipschitz nonlinear dynamics and switching topologies. Int J Robust Nonlinear Control. 2018;28(7):C2841‐C2852. · Zbl 1391.93021
[37] HeP, LiY, ParkJH. Noise tolerance leader‐following of high‐order nonlinear dynamical multi‐agent systems with switching topology and communication delay. J Franklin Inst. 2016;353:108‐143. · Zbl 1395.93014
[38] SaderM, LiuZ, WangF, ChenZ. Distributed robust fault‐tolerant consensus tracking control for multi‐agent systems with exogenous disturbances under switching topologies. IntJ Robust Nonlinear Control. 2022;32(3):1618‐1632. · Zbl 1527.93412
[39] LiuC, JiangB, ZhangK, PattonRJ. Distributed fault‐tolerant consensus tracking control of multi‐agent systems under fixed and switching topologies. IEEE Trans Circuit Syst I Regul Papers. 2021;68(4):1646‐1658.
[40] HanJ, LiuX, GaoX, WeiX. Intermediate observer‐based robust distributed fault estimation for nonlinear multiagent systems with directed graphs. IEEE Trans Industr Inform. 2020;16(12):7426‐7436.
[41] HadiAS, ShakerMS. A new estimation/decoupling approach for robust observer‐based fault reconstruction in nonlinear systems affected by simultaneous time varying actuator and sensor faults. J Franklin Inst. 2020;357(13):8956‐8979. · Zbl 1448.93113
[42] WuY, WangZ. Fuzzy adaptive practical fixed‐time consensus for second‐order nonlinear multiagent systems under actuator faults. IEEE Trans Cybern. 2021;51(3):1150‐1162.
[43] LiZ, RenW, LiuX, FuM. Consensus of multi‐agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans Automat Control. 2013;58(7):1786‐1791. · Zbl 1369.93032
[44] WangC, ZuoZ, QiZ, DingZ. Predictor‐based extended‐state‐observer design for consensus of MASs with delays and disturbances. IEEE Trans Cybern. 2019;49(4):1259‐1269.
[45] LiuH, LiS. Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans Ind Electron. 2012;59(2):1171‐1183.
[46] SuJ, MaH, QiuW, XiY. Task‐independent robotic uncalibrated hand‐eye coordination based on the extended state observer. IEEE Trans Syst Man Cybern. 2004;34(4):1917‐1922.
[47] LiZ, DuanZ, LewisF. Distributed robust consensus control of multi‐agent systems with heterogeneous mathching uncertainties. Automatica. 2014;50(3):883‐889. · Zbl 1298.93026
[48] YinY, WangF, LiuZ, QiangZ. Fully distributed observer‐based adaptive fault‐tolerant consensus control for multi‐agent systems. Control Theory Appl. 2021;38(7):1082‐1090. · Zbl 1488.93109
[49] YadegarM, MeskinN. Fault‐tolerant control of nonlinear heterogeneous multi‐agent systems. Automatica. 2021;127:109514. · Zbl 1461.93119
[50] DengC, WenC. Distributed resilient observer‐based fault‐tolerant control for heterogeneous multiagent systems under actuator faults and DoS attacks. IEEE Trans Contol Netw Syst. 2020;7(3):1308‐1318. · Zbl 07255382
[51] WangL, WenC, GuoF, CaiH, SuH. Robust cooperative output regulation of uncertain linear multi‐agent systems not detectable by regulated output. Automatica. 2019;101:C309‐C317. · Zbl 1415.93097
[52] SinghS, JanardhananS. Stochastic sliding mode control for parametric uncertain systems using functional observer. IEEE Trans Circuit Syst II Exp Briefs. 2019;66(8):1346‐1350.
[53] YuZ, SunY, DaiX, YeZ. Stability and control of uncertain ICPT system considering time‐varying delay and stochastic disturbance. Int J Robust Nonlinear Control. 2019;29:6582‐6604. · Zbl 1447.93275
[54] LeJ, ZhaoL, LiaoX, ZhouQ, LangH. Stability analysis of grid‐connected inverter system containing virtual synchronous generator under time delay and parameter uncertainty. Proc CSEE. 2021;41(12):4275‐4285.
[55] XiaoS, DongJ. Distributed fault‐tolerant tracking control for heterogeneous nonlinear multi‐agent systems under sampled intermittent communications. J Franklin Inst. 2021;358:9221‐9242. · Zbl 1478.93139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.