×

Robust time-varying formation control for uncertain multi-agent systems with communication delays and nonlinear couplings. (English) Zbl 1533.93146

Summary: This paper investigates the robust time-varying formation control problems for a class of higher-order multi-agent systems subject to communication delays and heterogeneous uncertainties accounting for not only the parameter perturbations, nonlinearities and external disturbances occurring in the node local dynamics but also the nonlinear couplings in the interconnections of different nodes. For both cases of partially known and unknown time-varying communication delays, we propose a unified formation control protocol, which incorporates a nominal controller to achieve the desired formation and a compensating signal to restrain the influences of uncertainties. Based on the signal compensation theory and Lyapunov-Krasovskii arguments, sufficient conditions to achieve the desired time-varying formation are derived in terms of LMI. Thereafter, an explicit expression to describe the formation reference dynamics is yielded. Moreover, an algorithm is concluded to design the presented formation protocol in four steps. It is proven that the formation error can be made as small as desired under the designed controller despite the uncertainties and communication delays. Numerical simulation results are shown to demonstrate the effectiveness of our proposed control schemes.
© 2023 John Wiley & Sons Ltd.

MSC:

93B35 Sensitivity (robustness)
93A16 Multi-agent systems
93C43 Delay control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] RenW, BeardRW. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Automat Contr. 2005;50(5):655‐661. · Zbl 1365.93302
[2] LiuH, MaT, LewisFL, WanY. Robust formation trajectory tracking control for multiple quadrotors with communication delays. IEEE Trans Control Syst Technol. 2020;28(6):2633‐2640. doi:10.1109/TCST.2019.2942277
[3] NazariM, ButcherEA, YucelenT, SanyalAK. Decentralized consensus control of a rigid‐body spacecraft formation with communication delay. J Guid Control Dyn. 2016;39(4):838‐851.
[4] OhKK, ParkMC, AhnHS. A survey of multi‐agent formation control. Automatica. 2015;53:424‐440. · Zbl 1371.93015
[5] TakahashiH, NishiH, OhnishiK. Autonomous decentralized control for formation of multiple mobile robots considering ability of robot. IEEE Trans Ind Electron. 2004;51(6):1272‐1279. doi:10.1109/TIE.2004.837848
[6] Olfati‐SaberR, MurrayR. Consensus problems in networks of agents with switching topology and time‐delays. IEEE Trans Automat Contr. 2004;49(9):1520‐1533. doi:10.1109/TAC.2004.834113 · Zbl 1365.93301
[7] JadbabaieA, LinJ, MorseAS. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Contr. 2003;48(6):988‐1001. · Zbl 1364.93514
[8] LiZ, DuanZ, LewisFL. Distributed robust consensus control of multi‐agent systems with heterogeneous matching uncertainties. Automatica. 2014;50(3):883‐889. · Zbl 1298.93026
[9] RenW. Consensus strategies for cooperative control of vehicle formations. IET Control Theory Appl. 2007;1(2):505‐512.
[10] ZhuW, ChengD. Leader‐following consensus of second‐order agents with multiple time‐varying delays. Automatica. 2010;46(12):1994‐1999. · Zbl 1205.93056
[11] ZhaoY, DuanZ, WenG, ChenG. Distributed
[( {H}_{\infty } \]\) consensus of multi‐agent systems: a performance region‐based approach. Int J Control. 2012;85(3):332‐341. · Zbl 1282.93030
[12] YuJ, DongX, LiangZ, LiQ, RenZ. Practical time‐varying formation tracking for high‐order nonlinear multiagent systems with multiple leaders based on the distributed disturbance observer. Int J Robust Nonlinear Control. 2018;28(9):3258‐3272. · Zbl 1396.93016
[13] LiZ, RenW, LiuX, FuM. Consensus of multi‐agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans Automat Contr. 2013;58(7):1786‐1791. doi:10.1109/TAC.2012.2235715 · Zbl 1369.93032
[14] HuaY, DongX, LiQ, RenZ. Distributed time‐varying formation robust tracking for general linear multiagent systems with parameter uncertainties and external disturbances. IEEE Trans Cybern. 2017;47(8):1959‐1969.
[15] SaradagiA, MuralidharanV, KrishnanV, MentaS, MahindrakarAD. Formation control and trajectory tracking of nonholonomic mobile robots. IEEE Trans Control Syst Technol. 2017;26(6):2250‐2258.
[16] YuJ, DongX, LiQ, LüJ, RenZ. Adaptive practical optimal time‐varying formation tracking control for disturbed high‐order multi‐agent systems. IEEE Trans Circuits Syst I: Regul Pap. 2022;69(6):2567‐2578.
[17] LiuY, JiaY. H_∞ consensus control of multi‐agent systems with switching topology: a dynamic output feedback protocol. Int J Control. 2010;83(3):527‐537. · Zbl 1222.93065
[18] WangJ, WangD, SuL, ParkJH, ShenH. Dynamic event‐triggered
[( {H}_{\infty } \]\) load frequency control for multi‐area power systems subject to hybrid cyber attacks. IEEE Trans Syst Man Cybern: Syst. 2022;52(12):7787‐7798.
[19] HuaY, DongX, HanL, LiQ, RenZ. Finite‐time time‐varying formation tracking for high‐order multiagent systems with mismatched disturbances. IEEE Trans Syst Man Cybern: Syst. 2018;50(10):3795‐3803.
[20] LiH. Fixed‐time output regulation of linear delay systems by smooth time‐varying control. Int J Robust Nonlinear Control. 2023;33(2):806‐819. · Zbl 1531.93372
[21] ZhangJ, LyuM, ShenT, LiuL, BoY. Sliding mode control for a class of nonlinear multi‐agent system with time delay and uncertainties. IEEE Trans Ind Electron. 2017;65(1):865‐875.
[22] XiaoH, LiZ, ChenCP. Formation control of leader-follower mobile robots’ systems using model predictive control based on neural‐dynamic optimization. IEEE Trans Ind Electron. 2016;63(9):5752‐5762.
[23] QiuL, XiangC, WenY, NajariyanM, LiuC, WuZ. Predictive output feedback control of networked control system with Markov DoS attack and time delay. Int J Robust Nonlinear Control. 2023;33(5):3376‐3395. · Zbl 1532.93080
[24] ShariatiA, TavakoliM. A descriptor approach to robust leader‐following output consensus of uncertain multi‐agent systems with delay. IEEE Trans Automat Contr. 2016;62(10):5310‐5317. · Zbl 1390.93077
[25] NunoE, LoriaA, HernándezT, MaghenemM, PanteleyE. Distributed consensus‐formation of force‐controlled nonholonomic robots with time‐varying delays. Automatica. 2020;120:109114. · Zbl 1453.93163
[26] QinL, HeX, ZhouD. Distributed proportion-integration-derivation formation control for second‐order multi‐agent systems with communication time delays. Neurocomputing. 2017;267:271‐282.
[27] WangA. Event‐based consensus control for single‐integrator networks with communication time delays. Neurocomputing. 2016;173:1715‐1719.
[28] YangY, JiangH, LiJ, HuaC. Robust complete synchronization control design for non‐collocated nonlinear master-slave system over delayed communication network. Int J Robust Nonlinear Control. 2023;33(3):2113‐2132. · Zbl 1532.93288
[29] GuoY, ZhouJ, LiG, ZhangJ. Robust formation tracking and collision avoidance for uncertain nonlinear multi‐agent systems subjected to heterogeneous communication delays. Neurocomputing. 2020;395:107‐116.
[30] De TommasiG, LuiDG, PetrilloA, SantiniS. A L2‐gain robust PID‐like protocol for time‐varying output formation‐containment of multi‐agent systems with external disturbance and communication delays. IET Control Theory Appl. 2021;15(9):1169‐1184.
[31] FiengoG, LuiDG, PetrilloA, SantiniS. Distributed robust output consensus for linear multi‐agent systems with input time‐varying delays and parameter uncertainties. IET Control Theory Appl. 2019;13(2):203‐212. · Zbl 1434.93004
[32] GonzálezA, AragüésR, López‐NicolásG, SagüésC. Predictor‐feedback synthesis in coordinate‐free formation control under time‐varying delays. Automatica. 2020;113:108811. · Zbl 1441.93013
[33] GonzálezA, AragüésR, López‐NicolásG, SagüésC. Weighted predictor‐feedback formation control in local frames under time‐varying delays and switching topology. Int J Robust Nonlinear Control. 2020;30(8):3484‐3500. · Zbl 1466.93054
[34] ChenL, LiC, GuoY, MaG, LiY, XiaoB. Formation-containment control of multi‐agent systems with communication delays. ISA Trans. 2022;128:32‐43.
[35] LiuJ, YuY, WangQ, SunC. Robust distributed consensus tracking control for high‐order uncertain nonlinear MASs with directed topologies. Asian J Control. 2020;22(6):2558‐2568. · Zbl 07879363
[36] LiXJ, YangGH. FLS‐based adaptive synchronization control of complex dynamical networks with nonlinear couplings and state‐dependent uncertainties. IEEE Trans Cybern. 2016;46(1):171‐180. doi:10.1109/TCYB.2015.2399334
[37] ZhangQ, LiuHH. UDE‐based robust command filtered backstepping control for close formation flight. IEEE Trans Ind Electron. 2018;65(11):8818‐8827.
[38] ZhouW, WangY, AhnCK, ChengJ, ChenC. Adaptive fuzzy backstepping‐based formation control of unmanned surface vehicles with unknown model nonlinearity and actuator saturation. IEEE Trans Veh Technol. 2020;69(12):14749‐14764.
[39] YangW, ChenJ, ZhangZ, ShiZ, ZhongY. Robust cascaded horizontal‐plane trajectory tracking for fixed‐wing unmanned aerial vehicles. J Franklin Inst. 2022;359(3):1083‐1112. · Zbl 1483.93449
[40] LiH, ShiP, YaoD. Adaptive sliding‐mode control of Markov jump nonlinear systems with actuator faults. IEEE Trans Automat Contr. 2016;62(4):1933‐1939. · Zbl 1366.93718
[41] HuaY, DongX, LiQ, RenZ. Distributed adaptive formation tracking for heterogeneous multiagent systems with multiple nonidentical leaders and without well‐informed follower. Int J Robust Nonlinear Control. 2020;30(6):2131‐2151. · Zbl 1465.93104
[42] AiX, YuJ, JiaZ, ShenY, MaP, YangD. Adaptive robust consensus tracking for nonlinear second‐order multi‐agent systems with heterogeneous uncertainties. Int J Robust Nonlinear Control. 2017;27(18):5082‐5096. · Zbl 1381.93011
[43] ChenJ, ShiZ, ZhongY. Robust formation control for uncertain multi‐agent systems. J Franklin Inst. 2019;356(15):8237‐8254. · Zbl 1423.93096
[44] FeiY, ShiP, LimCC. Robust formation control for multi‐agent systems: a reference correction based approach. IEEE Trans Circuits Syst I: Regul Pap. 2021;68(6):2616‐2625.
[45] SakthivelR, SakthivelR, KwonOM, KaviarasanB. Fault estimation and synchronization control for complex dynamical networks with time‐varying coupling delay. Int J Robust Nonlinear Control. 2021;31(6):2205‐2221. · Zbl 1526.93250
[46] ChenT, LiuX, LuW. Pinning complex networks by a single controller. IEEE Trans Circuits Syst I: Regul Pap. 2007;54(6):1317‐1326. · Zbl 1374.93297
[47] DongX, XiJ, LuG, ZhongY. Formation control for high‐order linear time‐invariant multiagent systems with time delays. IEEE Trans Control Netw Syst. 2014;1(3):232‐240. · Zbl 1370.93180
[48] LiuH, MaT, LewisFL, WanY. Robust formation control for multiple quadrotors with nonlinearities and disturbances. IEEE Trans Cybern. 2020;50(4):1362‐1371. doi:10.1109/TCYB.2018.2875559
[49] XiJ, ShiZ, ZhongY. Consensus analysis and design for high‐order linear swarm systems with time‐varying delays. Phys A: Stat Mech Appl. 2011;390(23‐24):4114‐4123.
[50] CaiN, XiJX, ZhongYS. Swarm stability of high‐order linear time‐invariant swarm systems. IET Control Theory Appl. 2011;5(2):402‐408.
[51] LiuH, LiD, ZuoZ, ZhongY. Robust three‐loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans Ind Electron. 2016;63(4):2263‐2274.
[52] MinH, XuS, ZhangB, DuanN. Practically finite‐time control for nonlinear systems with mismatching conditions and application to a robot system. IEEE Trans Syst Man Cybern: Syst. 2017;50(2):480‐489.
[53] ChengB, WuZ, LiZ. Distributed edge‐based event‐triggered formation control. IEEE Trans Cybern. 2019;51:1241‐1252.
[54] DengC, WenC. Distributed resilient observer‐based fault‐tolerant control for heterogeneous multiagent systems under actuator faults and DoS attacks. IEEE Trans Control Netw Syst. 2020;7(3):1308‐1318. doi:10.1109/TCNS.2020.2972601 · Zbl 07255382
[55] ZhongY. Low‐Order Robust Model Matching Controller Design. PhD thesis. Hokkaido University; 1988.
[56] ZhongYS. Robust output tracking control of SISO plants with multiple operating points and with parametric and unstructured uncertainties. Int J Control. 2002;75(4):219‐241. · Zbl 1009.93026
[57] PengL, GuanF, PerneelL, Fayyad‐KazanH, TimmermanM. Decentralized multi‐robot formation control with communication delay and asynchronous clock. J Intell Robot Syst. 2018;89:465‐484.
[58] WangY, RajamaniR, ZemoucheA. A quadratic matrix inequality based PID controller design for LPV systems. Syst Control Lett. 2019;126:67‐76. · Zbl 1425.93086
[59] KhalilHK. Nonlinear Systems. Prentice Hall; 2002. · Zbl 1003.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.