×

A model about regulation on three division modes of stem cell. (English) Zbl 1533.92069

Summary: We construct a multi-stage cell lineage model for cell division, apoptosis and movement. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the stem cell divisions (including self-renewal, asymmetrical cell division (ACD) and differentiation). The densities of cells and molecules are described by coupled reaction-diffusion partial differential equations, and the plane wavefront propagation speeds can be obtained analytically and verified numerically. It is found that with ACD the population and propagation of stem cells can be promoted but the negative regulation on self-renewal and differentiation will work slowly. Regulatory inhibition on differentiation will inversely increase stem cells but not affect the population and wave propagation of the cell lineage. While negative regulation on self-renewal and ACD will decrease the population of stem cells and slow down the propagation, and even drive stem cells to extinction. Moreover we find that inhibition on self-renewal has a strength advantage while inhibition on ACD has a range advantage to kill stem cells. Possible relations to model cancer development and therapy are also discussed.

MSC:

92C37 Cell biology
92C15 Developmental biology, pattern formation
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Al-Hajj, M.; Wicha, M. S.; Benito-Hernandez, A.; Morrison, S. J.; Clarke, M. F., Prospective identification of tumorigenic breast cancer cells, PNAS, 100, 3983-3988 (2003)
[2] Andersson, E. R.; Lendahl, U., Therapeutic modulation of Notch signalling-are we there yet?, Nat. Rev. Drug Discov., 13, 357-378 (2014)
[3] Batlle, E.; Clevers, H., Cancer stem cells revisited, Nat. Med., 23, 10, 1124 (2017)
[4] Bonnet, D.; Dick, J. E., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat. Med., 3, 730-737 (1997)
[5] Chou, W. C.; Dang, C. V., Acute promyelocytic leukemia: recent advances in therapy and molecular basis of response to arsenic therapies, Curr. Opin. Hematol., 12, 1, 1-6 (2005)
[6] Chou, C. S.; Lo, W. C.; Gokoffski, K. K.; Zhang, Y. T.; Wan, F. Y.M.; Lander, A. D.; Calof, A. L.; Nie, Q., Spatial dynamics of multistage cell ineages in tissue stratification, Biophys. J ., 99, 3145-3154 (2010)
[7] Cicalese, A.; Bonizzi, G.; Pasi, C. E., The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells, Cell, 138, 1083-1095 (2009)
[8] Clarke, M. F., Oncogene, self-renewal and cancer, Pathol. Biol., 54, 109-111 (2016)
[9] Daynac, M.; Petritsch, C. K., Regulation of asymmetric cell division in mammalian neural stem and cancer precursor cells, Results Probl. Cell Differ. (2017)
[10] Doumic, M.; Marciniak-Czochra, A., A structured population model of cell differentiation, SIAM J. Appl. Math., 71, 1918-1940 (2011) · Zbl 1235.35030
[11] Driessens, G.; Beck, B.; Caauwe, A.; Simons, B. D.; Blanpain, C., Defining the mode of tumor growth by clonal analysis, Nature, 488, 527-530 (2012)
[12] Getto, P.; Marciniak-Czochra, A., Mathematical Modelling as a tool to understand cell self-renewal and differentiation, Mammary Stem Cells, 1293, 247-266 (2015)
[13] Gomez-Lopez, S., Lerner, R.G., Petritsch, C., Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol. Life Sci. doi: 10.1007/s00018-013-1386-1.
[14] Graner, F.; Glazier, J. A., Simulation of biological cell sorting using a two-dimensional extended Potts model, Phys. Rev. Lett., 69, 2013-2016 (1992)
[15] Heidstra, R., Asymmetric cell division in plant development, Prog. Mol. Subcell. Biol., 45, 1-37 (2007)
[16] Hirth, F., Stem cells and Asymmetric Cell Division (2011), Springer
[17] Hu, J. W.; Mirshahidi, S., Cancer stem cell self-renewal as a therapeutic target in human oral cancer, Oncogene, 38 (2019)
[18] Jones, M. F.; Hara, T.; Francis, P.; Li, X. L.; Bilke, S., The cdx1-microrna-215 axis regulates colorectal cancer stem cell differentiation, PNAS, 112, 13, 1550-1558 (2015)
[19] Kawamura, T., Linking the p53 tumour suppressor pathway to somatic cell reprogramming, Nature, 460, 7259, 1140-1144 (2009)
[20] Klein, A. M.; Doupé, D. P.; Jones, P. H.; Simons, B. D., Kinetics of cell division in epidermal maintenance, Phys. Rev. E, 76, Article 021910 pp. (2007)
[21] Klein, A. M.; Doupé, D. P.; Jones, P. H.; Simons, B. D., Mechanism of murine epidermal maintenance: Cell division and the voter model, Phys. Rev. E, 77, Article 031907 pp. (2008)
[22] Knoblich, J. A., Mechanisms of asymmetric stem cell division, Cell, 132, 583-597 (2008)
[23] Kreso, A.; van Nicholas, P.; Pedley, N. M., Self-renewal as a therapeutic target in human colorectal cancer, Nat. Med., 20, 1, 29-36 (2014)
[24] Lander, A. D.; Gokoffski, K. K.; Wan, F. Y.M.; Nie, Q.; Calof, A. L., Cell lineages and the logic of proliferation control, PLoS Biol., 7, 1, e1000015 (2009)
[25] Liu, J.; Ding, Y.; Liu, Z. M.; Liang, X. T., Senescence in mesenchymal stem cells: functional alterations, molecular mechanisms, and rejuvenation strategies, Front. Cell Dev. Biol., 8, 258 (2020)
[26] Liu, D. H.; Manaph, N. P.A., Coating materials for neural stem/progenitor cell culture and differentiation, Stem Cell Dev., 29, 463-474 (2020)
[27] Marshman, E.; Booth, C.; Potten, C. S., The intestinal epithelial stem cells, Bioessays, 24, 91-98 (2002)
[28] Novellasdemunt, L.; Antas, P.; Li, V. S., Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms, Am J Physiol. Cell Physiol., 309, 511-521 (2015)
[29] O’Brien, C. A.; Pollett, A.; Gallinger, S.; Dick, J. E., A human colon cancer cell capable of initiating tumour growth in immune deficient mice, Nature, 445, 106-110 (2007)
[30] Ordaz-Romos, A.; Tellez-Jimenez, O.; Vazquez-Santillan, K., Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications, Front. Cell Dev. Biol., 11, 1221175 (2023)
[31] Petritsch, C.; Shen, X., Asymmetric Division of Cancer stem cells (2016), Elsevier Inc
[32] Shostak, S., (Re)defining stem cells, Bioessays, 28, 301-308 (2006)
[33] Singh, S. K., Identification of human brain tumour initiating cells, Nature, 432, 396-401 (2004)
[34] Sugiarto, S.; Persson, A. I.; Munoz, E. G., Asymmetry defective oligodendrocyte progenitors are glioma precursors, Cancer Cell, 20, 328-340 (2011)
[35] Takebe, N.; Miele, L.; Harris, P. J., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update, Nat. Rev. Clin. Oncol., 12, 8, 445-464 (2015)
[36] Torres, C. M.; Wu, M. Y., Selective inhibition of cancer cell self-renewal through a Quisinostat-histone H1.0 axis, Nat. Commun., 11, 1792 (2020)
[37] Wang, M. X.; Lai, P. K., Population dynamics and wave propagation in a Lotka-Volterra system with spatial diffusion, Phys. Rev. E, 86, Article 051908 pp. (2012)
[38] Wang, M. X.; Li, Y. J.; Lai, P. K.; Chan, C. K., Model on cell movement, growth, differentiation and de-differentiation: reaction-diffusion equation and wave propagation, Eur. Phys. J. E, 36, 65 (2013)
[39] Wang, M. X.; Ma, Y. Q.; Lai, P. Y., Regulatory effects on the population dynamics and wave propagation in a cell lineage model, J. Theor. Biol., 393, 105-117 (2016) · Zbl 1343.92137
[40] Wang, M. X.; Lai, P. K.; Ma, Y. Q., Regulatory effects on the population dynamics and wave propagation in a cell lineage model, J. Theor. Biol., 393, 105-117 (2016) · Zbl 1343.92137
[41] Watt, F. M., Stem cells fate and patterning in mammalian epidermis, Curr. Opin. Genet. Dev., 11, 410-417 (2001)
[42] Witterstein, G., A phase field model for stem cell differentiation, AIP Conf. Proc., 971, 69-78 (2008)
[43] Wu, M.; Kwon, H. Y.; Rattis, F., Imaging hematopoietic precursor division in real time, Cell Stem Cell, 1, 541-554 (2007)
[44] Yan, K. X.; Wang, M. X., A cell model about symmetric and asymmetric stem cell division, J. Theor. Biol., 560, Article 111380 pp. (2023) · Zbl 1506.92022
[45] Ye, Y.; Zhang, Z.; Zhu, M.; Lei, J., Using single-cell entropy to describe the dynamics of reprogramming and differentiation of induced pluripotent stem cells, Int. J. Mod Phys B, 34, 2050288 (2020)
[46] Zhang, L.; Lander, A. D.; Nie, Q., A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts, BMC Syst. Biol., 6, 93 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.