×

Hamilton-Jacobi framework for Regge-Teitelboim gravity. (English) Zbl 1533.83104

Summary: In higher co-dimension, we discuss the Hamilton-Jacobi formalism for brane gravity described by the Regge-Teitelboim model. Considering that it is originally a second-order in derivatives singular theory, we analyze its constraint structure by identifying the complete set of Hamilton-Jacobi equations, under Carathéodory’s equivalent Lagrangians method, which goes hand in hand with the study of the integrability for this type of gravity. Besides, we calculate the characteristic equations, including the one that satisfies the Hamilton principal function S. We find the presence of involutive and non-involutive constraints so that by properly defining a generalized bracket, the non-involutive constraints that originally arise in our framework are removed while the set of parameters related to time evolution and gauge transformations is identified. A detailed comparison is also made with a recent Ostrogradsky-Hamilton approach for constrained systems, developed for this brane gravity. Some facts about the gauge symmetries behind this theory are discussed.

MSC:

83E05 Geometrodynamics and the holographic principle
83E15 Kaluza-Klein and other higher-dimensional theories

References:

[1] Regge, T., Teitelboim, C.: General relativity à la string: a progress report. In: Proceedings of the First Marcel Grossman Meeting, Trieste, Italy, 1975 (1977)
[2] Friedman, A., Local isometric imbedding of Riemannian manifolds with indefinite metrics, J. Math. Mech., 10, 4, 625-649 (1961) · Zbl 0187.19103
[3] Deser, S.; Pirani, F.; Robinson, D., New embedding model of general relativity, Phys. Rev. D, 14, 12, 3301 (1976) · doi:10.1103/PhysRevD.14.3301
[4] Tapia, V., Gravitation a la string, Class. Quantum Grav., 6, 3, 49 (1989) · Zbl 0669.53059 · doi:10.1088/0264-9381/6/3/003
[5] Maia, M., On the integrability conditions for extended objects, Class. Quantum Grav., 6, 2, 173 (1989) · Zbl 0663.53062 · doi:10.1088/0264-9381/6/2/011
[6] Davidson, A.; Karasik, D., Quantum gravity of a brane-like universe, Mod. Phys. Lett. A, 13, 27, 2187-2192 (1998) · doi:10.1142/S0217732398002321
[7] Karasik, D.; Davidson, A., Geodetic brane gravity, Phys. Rev. D, 67, 6 (2003) · Zbl 1222.83172 · doi:10.1103/PhysRevD.67.064012
[8] Pavšič, M.: The Landscape of Theoretical Physics: A Global View—From Point Particles to the Brane World and Beyond in Search of a Unifying Principle. Fundamental Theories of Physics, Vol. 119. Springer, Berlin (2002) · Zbl 1059.81004
[9] Paston, SA; Franke, VA, Canonical formulation of the embedded theory of gravity equivalent to Einstein’s general relativity, Theor. Math. Phys., 153, 1582-1596 (2007) · Zbl 1136.83008 · doi:10.1007/s11232-007-0134-9
[10] Cordero, R.; Molgado, A.; Rojas, E., Ostrogradski approach for the Regge-Teitelboim type cosmology, Phys. Rev. D, 79, 2 (2009) · Zbl 1222.83192 · doi:10.1103/PhysRevD.79.024024
[11] Paston, S.; Semenova, A., Constraint algebra for Regge-Teitelboim formulation of gravity, Int. J. Theor. Phys., 49, 2648-2658 (2010) · Zbl 1204.83032 · doi:10.1007/s10773-010-0456-5
[12] Estabrook, FB, The Hilbert Lagrangian and isometric embedding: tetrad formulation of Regge-Teitelboim gravity, J. Math. Phys., 51, 4 (2010) · Zbl 1310.83005 · doi:10.1063/1.3352557
[13] Sheykin, A.; Grechko, A., Lower-dimensional Regge-Teitelboim gravity, Gravit. Cosmol., 29, 1, 39-42 (2023) · Zbl 1527.83070 · doi:10.1134/S0202289323010097
[14] Banerjee, R.; Mukherjee, P.; Paul, B., New Hamiltonian analysis of Regge-Teitelboim minisuperspace cosmology, Phys. Rev. D, 89, 4 (2014) · doi:10.1103/PhysRevD.89.043508
[15] Capovilla, R.; Cruz, G.; Rojas, E., Ostrogradsky-Hamilton approach to geodetic brane gravity, Int. J. Mod. Phys. D, 31, 2, 2250008 (2022) · Zbl 1514.83047 · doi:10.1142/S0218271822500080
[16] Fabi, S.; Stern, A.; Xu, C., Cosmic acceleration in Regge-Teitelboim gravity, Class. Quantum Grav., 39, 17 (2022) · Zbl 1502.83007 · doi:10.1088/1361-6382/ac813f
[17] Paston, S.; Zaitseva, T., Canonical formulation of embedding gravity in a form of general relativity with dark matter, Gravit. Cosmol., 29, 17, 153-162 (2023) · Zbl 1530.83055 · doi:10.1134/S0202289323020093
[18] Stern, A.; Xu, C., Dark energy from the fifth dimension, Phy. Rev. D, 107, 2 (2023) · doi:10.1103/PhysRevD.107.024001
[19] Nambu, Y., Hamilton-Jacobi formalism for strings, Phys. Lett. B, 92, 3-4, 327-330 (1980) · doi:10.1016/0370-2693(80)90275-0
[20] Hosotani, Y.; Nakayama, R., The Hamilton-Jacobi equations for strings and p-branes, Mod. Phys. Lett. A, 14, 28, 1983-1988 (1999) · doi:10.1142/S0217732399002042
[21] Baker, L.; Fairlie, DB, Hamilton-Jacobi equations and brane associated Lagrangians, Nucl. Phys. B, 596, 1-2, 348-364 (2001) · Zbl 0972.81146 · doi:10.1016/S0550-3213(00)00703-3
[22] Carathéodory, C., Calculus of Variations and Partial Differential Equations of First Order (1967), San Francisco: Holden-Day, San Francisco · Zbl 0152.31602
[23] Güler, Y., Canonical formulation of singular systems, Il Nuovo Cimento. B, 107, 1389-1395 (1992) · doi:10.1007/BF02722849
[24] Güler, Y., Integration of singular systems, Il Nuovo Cimento. B, 107, 1143-1149 (1992) · doi:10.1007/BF02727199
[25] Güler, Y., Classical fields as constrained systems, Nuovo Cimento. B, 113, 7, 893-904 (1998)
[26] Pimentel, BM; Teixeira, RG, Hamilton-Jacobi formulation for singular systems with second-order Lagrangians, Il Nuovo Cimento. B, 111, 841-854 (1996) · doi:10.1007/BF02749015
[27] Pimentel, B.; Teixeira, R., Generalization of the Hamilton-Jacobi approach for higher order singular systems, Il Nuovo Cimento. B, 113, 805-820 (1998)
[28] Muslih, S.; Güler, Y., Is gauge fixing of constrained systems necessary?, Nuovo Cimento. B, 113, 3, 277-289 (1998)
[29] Hasan, EH; Rabei, EM; Ghassib, HB, Quantization of higher-order constrained Lagrangian systems using the WKB approximation, Int. J. Theor. Phys., 43, 2285-2298 (2004) · Zbl 1073.81040 · doi:10.1023/B:IJTP.0000049027.45011.37
[30] Aguilar-Salas, A.; Molgado, A.; Rojas, E., Hamilton-Jacobi approach for Regge-Teitelboim cosmology, Class. Quantum Grav., 37, 14 (2020) · Zbl 1478.83230 · doi:10.1088/1361-6382/ab87d9
[31] Muslih, S.; Güler, Y., The Feynman path integral quantization of constrained systems, Nuovo Cimento. B, 112, 1, 97-107 (1997)
[32] Baleanu, D.; Güler, Y., Hamilton-Jacobi quantization of the finite dimensional systems with constraints, Nuovo Cimento. B, 114, 1, 704-716 (1999)
[33] Muslih, S., Quantization of singular systems with second-order Lagrangians, Mod. Phys. Lett. A, 17, 36, 2383-2391 (2002) · Zbl 1083.81008 · doi:10.1142/S0217732302009027
[34] Hasan, E., Path integral quantization of Lagrangians with linear accelerations, Eur. Sci. J., 10, 3, 331-345 (2014)
[35] Capovilla, R.; Guven, J.; Rojas, E., ADM worldvolume geometry, Nucl. Phys. B Proc. Suppl., 88, 1-3, 337-340 (2000) · Zbl 1273.83166 · doi:10.1016/S0920-5632(00)00797-0
[36] Capovilla, R.; Guven, J.; Rojas, E., Hamiltonian dynamics of extended objects, Class. Quantum Grav., 21, 23, 5563 (2004) · Zbl 1073.83010 · doi:10.1088/0264-9381/21/23/017
[37] Franke, V.; Tapia, V., The ADM Lagrangian in extrinsic gravity, Il Nuovo Cimento. B, 107, 611-630 (1992) · doi:10.1007/BF02723170
[38] Ostrogradsky, M.: Mem. Ac. St. Petersbourg V. Mem. Ac. St. Petersbourg V 14, 385 (1850)
[39] Cruz, M.; Gómez-Cortés, R.; Molgado, A.; Rojas, E., Hamiltonian analysis for linearly acceleration-dependent Lagrangians, J. Math. Phys., 57, 6 (2016) · Zbl 1347.70029 · doi:10.1063/1.4954804
[40] Aguilar-Salas, A.; Rojas, E., Hamilton-Jacobi approach for linearly acceleration-dependent Lagrangians, Ann. Phys., 430 (2021) · Zbl 1464.70012 · doi:10.1016/j.aop.2021.168507
[41] Cruz, M.; Rojas, E., Born-Infeld extension of Lovelock brane gravity, Class. Quantum Grav., 30, 11 (2013) · Zbl 1271.83063 · doi:10.1088/0264-9381/30/11/115012
[42] Bagatella-Flores, N.; Campuzano, C.; Cruz, M.; Rojas, E., Covariant approach of perturbations in Lovelock type brane gravity, Class. Quantum. Grav., 33, 24 (2016) · Zbl 1354.83045 · doi:10.1088/0264-9381/33/24/245012
[43] Dirac, PAM, Lectures on Quantum Mechanics (1964), New York: Yeshiva University, New York
[44] Henneaux, M.; Teitelboim, C., Quantization of Gauge Systems (1992), New Jersey: Princeton University Press, New Jersey · Zbl 0838.53053 · doi:10.1515/9780691213866
[45] Rothe, HJ; Rothe, KD, Classical and Quantum Dynamics of Constrained Hamiltonian Systems (2010), Singapore: World Scientific, Singapore · Zbl 1259.70001
[46] Bertin, M.; Pimentel, B.; Pompeia, P., Hamilton-Jacobi approach for first order actions and theories with higher derivatives, Ann. Phys., 323, 3, 527-547 (2008) · Zbl 1336.70034 · doi:10.1016/j.aop.2007.11.003
[47] Bertin, M.; Pimentel, B.; Valcárcel, C., Non-involutive constrained systems and Hamilton-Jacobi formalism, Ann. Phys., 323, 12, 3137-3149 (2008) · Zbl 1155.70011 · doi:10.1016/j.aop.2008.09.002
[48] Bertin, M.; Pimentel, B.; Valcárcel, C., Involutive constrained systems and Hamilton-Jacobi formalism, J. Math. Phys., 55, 11 (2014) · Zbl 1344.70046 · doi:10.1063/1.4900921
[49] Capovilla, R.; Guven, J., Geometry of deformations of relativistic membranes, Phys. Rev. D, 51, 12, 6736 (1995) · Zbl 1291.83193 · doi:10.1103/PhysRevD.51.6736
[50] Arreaga, G.; Capovilla, R.; Guven, J., Noether currents for bosonic branes, Ann. Phys., 279, 1, 126-158 (2000) · Zbl 1031.81626 · doi:10.1006/aphy.1999.5979
[51] Nesterenko, V.; Han, NS, The Hamiltonian formalism in the model of the relativistic string with rigidity, Int. J. Mod. Phys. A, 3, 10, 2315-2329 (1988) · doi:10.1142/S0217751X88000977
[52] Nesterenko, VV, Singular Lagrangians with higher derivatives, J. Phys. A: Math. Gen., 22, 10, 1673 (1989) · Zbl 0695.58014 · doi:10.1088/0305-4470/22/10/021
[53] Wald, RM, General Relativity (1984), Chicago: University of Chicago Press, Chicago · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[54] Ashtekar, A., New Perspectives in Canonical Gravity (1988), Napoli: Bibliopolis, Napoli · Zbl 0704.53056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.