×

Loop representation of quantum gravity. (English) Zbl 1533.83028

Summary: A hyperlink is a finite set of non-intersecting simple closed curves in \(\mathbb{R}^4 \equiv \mathbb{R} \times \mathbb{R}^3\), and each curve is either a matter or geometric loop. We consider an equivalence class of such hyperlinks, up to time-like isotopy, preserving time-ordering. Using an equivalence class and after coloring each matter component loop with an irreducible representation of \(\mathfrak{su}(2) \times \mathfrak{su}(2)\), we can define its Wilson loop observable using an Einstein-Hilbert action, which is now thought of as a functional acting on the set containing equivalence classes of hyperlinks. We construct a vector space using these functionals, which we now term quantum states. To make it into a Hilbert space, we need to define a counting probability measure on the space containing equivalence classes of hyperlinks. In our previous work, we defined area, volume and curvature operators, corresponding to given geometric objects like surface and a compact solid spatial region. These operators act on the quantum states and, by deliberate construction of the Hilbert space, are self-adjoint and possibly unbounded operators. Using these operators and Einstein’s field equations, we can proceed to construct a quantized stress operator and also a Hamiltonian constraint operator for the quantum system. We will also use the area operator to derive the Bekenstein entropy of a black hole. In the concluding section, we will explain how loop quantum gravity predicts the existence of gravitons, implies causality and locality in quantum gravity and formulates the principle of equivalence mathematically in its framework.

MSC:

83C45 Quantization of the gravitational field
81V17 Gravitational interaction in quantum theory

References:

[1] Summers, S.J.: A Perspective on Constructive Quantum Field Theory, ArXiv e-prints (2012)
[2] Jaffe, A., Constructive quantum field theory, Math. Phys., 2000, 111-127, 2000 · Zbl 1074.81543
[3] Thiemann, T.: Lectures on loop quantum gravity. Lect. Notes Phys. 631, 41-135 (2003). [41(2002)] · Zbl 1056.83015
[4] Thiemann, T., Modern Canonical Quantum General Relativity, 2008, Cambridge: Cambridge University Press, Cambridge
[5] Rovelli, C., Quantum Gravity, 2004, Cambridge: Cambridge University Press, Cambridge · Zbl 1140.83005 · doi:10.1017/CBO9780511755804
[6] Rovelli, C., Loop quantum gravity, Living Rev. Relativ., 1, 1, 75, 1998 · Zbl 1023.83013 · doi:10.12942/lrr-1998-1
[7] Smolin, L.; Rickles, D.; French, S.; Saatsi, J., The case for background independence, The Structural Foundations of Quantum Gravity, 196-239, 2006, Oxford: Oxford University Press, Oxford · Zbl 1116.83013 · doi:10.1093/acprof:oso/9780199269693.003.0007
[8] Ashtekar, A.; Baez, JC; Krasnov, K., Quantum geometry of isolated horizons and black hole entropy, Adv. Theor. Math. Phys., 4, 1-94, 2000 · Zbl 0981.83028 · doi:10.4310/ATMP.2000.v4.n1.a1
[9] Hooft, G.: Obstacles on the way towards the quantisation of space, time and matter-and possible resolutions. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 32(2), 157-180 (2001). (Spacetime, fields and understanding: persepectives on quantum field) · Zbl 1222.81092
[10] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 3, 351-399, 1989 · Zbl 0667.57005 · doi:10.1007/BF01217730
[11] Lim, A.P.C.: Non-abelian gauge theory for Chern-Simons path integral on \({R}^3\). J. Knot Theory Ramif. 21(4), 1250039 (2012) · Zbl 1236.81154
[12] Witten, E., (2+1)-Dimensional gravity as an exactly soluble system, Nucl. Phys. B, 311, 46, 1988 · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[13] Atiyah, MF, Topological quantum field theory, Publ. Math. l’IHÉS, 68, 175-186, 1988 · Zbl 0692.53053 · doi:10.1007/BF02698547
[14] Atiyah, M., The Geometry and Physics of Knots, 1990, Cambridge: Cambridge University Press, Cambridge · Zbl 0729.57002 · doi:10.1017/CBO9780511623868
[15] Rovelli, C.; Smolin, L., Knot theory and quantum gravity, Phys. Rev. Lett., 61, 1155-1158, 1988 · doi:10.1103/PhysRevLett.61.1155
[16] Mercuri, S.: Introduction to Loop Quantum Gravity. PoS (ISFTG) 016 (2009)
[17] Ashtekar, A., Gravity and the quantum, New J. Phys., 7, 198, 2005 · Zbl 0977.83036 · doi:10.1088/1367-2630/7/1/198
[18] Rovelli, C.; Smolin, L., Loop space representation of quantum general relativity, Nucl. Phys. B, 331, 80-152, 1990 · doi:10.1016/0550-3213(90)90019-A
[19] Carlip, S., Lectures on (2+1) dimensional gravity, J. Korean Phys. Soc., 28, S447-S467, 1995
[20] Baez, JC, An Introduction to spin foam models of quantum gravity and BF theory, Lect. Notes Phys., 543, 25-94, 2000 · doi:10.1007/3-540-46552-9_2
[21] Baez, J.: Spin Networks, Spin Foams and Quantum Gravity (1999)
[22] Baez, JC, Spin networks in gauge theory, Adv. Math., 117, 2, 253-272, 1996 · Zbl 0843.58012 · doi:10.1006/aima.1996.0012
[23] Rovelli, C.; Smolin, L., Spin networks and quantum gravity, Phys. Rev. D, 52, 5743-5759, 1995 · doi:10.1103/PhysRevD.52.5743
[24] Pullin, J., Canonical quantization of general relativity: the last 18 years in a nutshell, AIP Conf. Proc., 668, 1, 141-153, 2003 · Zbl 1031.83001 · doi:10.1063/1.1587095
[25] Thiemann, T., Loop quantum gravity: an inside view, Lect. Notes Phys., 721, 185-263, 2007 · Zbl 1151.83019 · doi:10.1007/978-3-540-71117-9_10
[26] Ashtekar, A., New variables for classical and quantum gravity, Phys. Rev. Lett., 57, 2244-2247, 1986 · doi:10.1103/PhysRevLett.57.2244
[27] Ashtekar, A., New Hamiltonian formulation of general relativity, Phys. Rev. D, 36, 1587-1602, 1987 · doi:10.1103/PhysRevD.36.1587
[28] Thiemann, T., Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity, Phys. Lett. B, 380, 3, 257-264, 1996 · Zbl 0945.83013 · doi:10.1016/0370-2693(96)00532-1
[29] Rovelli, C.; Smolin, L., Discreteness of area and volume in quantum gravity, Nucl. Phys. B, 442, 3, 593-619, 1995 · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[30] Ashtekar, A.; Lewandowski, J., Background independent quantum gravity: a status report, Class. Quantum Gravity, 21, 15, R53, 2004 · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[31] Lim, APC, Area operator in loop quantum gravity, Ann. Henri Poincaré, 18, 11, 3719-3735, 2017 · Zbl 1429.83024 · doi:10.1007/s00023-017-0600-3
[32] Lim, APC, Invariants in quantum geometry, Rep. Math. Phys., 87, 1, 87-105, 2021 · Zbl 1462.81143 · doi:10.1016/S0034-4877(21)00013-6
[33] Jacobson, T.; Smolin, L., Nonperturbative quantum geometries, Nucl. Phys. B, 299, 2, 295-345, 1988 · doi:10.1016/0550-3213(88)90286-6
[34] Lim, APC, Path integral quantization of volume, Ann. Henri Poincaré, 21, 1311-1327, 2020 · Zbl 1435.83054 · doi:10.1007/s00023-019-00882-4
[35] Lim, APC, Quantized curvature in loop quantum gravity, Rep. Math. Phys., 82, 3, 355-372, 2018 · Zbl 1441.83013 · doi:10.1016/S0034-4877(19)30007-2
[36] Lim, A.P.C.: Einstein-Hilbert Path Integrals in \({\mathbb{R}}^4\). ArXiv e-prints (2017)
[37] Geroch, RP, The domain of dependence, J. Math. Phys., 11, 437-439, 1970 · Zbl 0189.27602 · doi:10.1063/1.1665157
[38] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang: an analytical and numerical investigation, Phys. Rev. D, 73, 2006 · doi:10.1103/PhysRevD.73.124038
[39] Corichi, A.; Ryan, MP; Sudarsky, D., Quantum geometry as a relational construct, Mod. Phys. Lett. A, 17, 9, 555-567, 2002 · Zbl 1083.83515 · doi:10.1142/S0217732302006692
[40] Streater, RF; Wightman, AS, PCT, Spin Statistics, and All That, 1964, New York: W A Benjamin Inc, New York · Zbl 0135.44305
[41] Ashtekar, A.; Corichi, A.; Singh, P., Robustness of key features of loop quantum cosmology, Phys. Rev. D, 77, 024046, 2008 · doi:10.1103/PhysRevD.77.024046
[42] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang, Phys. Rev. Lett., 96, 141301, 2006 · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[43] Feynman, R.; Morinigo, F.; Wagner, W.; Hatfield, B., Feynman Lectures on Gravitation, 2002, New York: Avalon Publishing, New York
[44] Peskin, M.; Schroeder, D., An Introduction to Quantum Field Theory, 1995, New York: Avalon Publishing, New York
[45] Modanese, G., Potential energy in quantum gravity, Nucl. Phys. B, 434, 3, 697-708, 1995 · Zbl 1020.83565 · doi:10.1016/0550-3213(94)00489-2
[46] Nair, VP, Quantum Field Theory. A Modern Perspective, 2005, New York: Springer, New York · Zbl 1077.81001
[47] Smolin, L.: The Classical limit and the form of the Hamiltonian constraint in nonperturbative quantum general relativity (1996)
[48] Bekenstein, JD, Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D, 9, 3292-3300, 1974 · doi:10.1103/PhysRevD.9.3292
[49] Bekenstein, JD, Black holes and entropy, Phys. Rev. D, 7, 2333-2346, 1973 · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[50] Wald, R., General Relativity, 1984, Chicago: University of Chicago Press, Chicago · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[51] Krasnov, V.: On statistical mechanics of gravitational systems. Gen. Relativ. Gravit. 30, 53-68 (1996). arXiv:gr-qc/9605047 · Zbl 0910.58045
[52] Rovelli, C., Black hole entropy from loop quantum gravity, Phys. Rev. Lett., 77, 3288-3291, 1996 · Zbl 0955.83506 · doi:10.1103/PhysRevLett.77.3288
[53] Krasnov, KV, On quantum statistical mechanics of Schwarzschild black hole, Gen. Relativ. Gravit., 30, 53-68, 1998 · Zbl 0910.58045 · doi:10.1023/A:1018820916342
[54] Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K., Quantum geometry and black hole entropy, Phys. Rev. Lett., 80, 904-907, 1998 · Zbl 0949.83024 · doi:10.1103/PhysRevLett.80.904
[55] Schutz, B., A First Course in General Relativity, 1985, Cambridge: Cambridge University Press, Cambridge · Zbl 0556.53040
[56] Lim, APC, Chern-Simons path integral on \(\mathbb{R}^3\) using abstract Wiener measure, Commun. Math. Anal., 11, 2, 1-22, 2011 · Zbl 1208.81133
[57] Ekon, E.: On the Status of the Equivalence Principle in Quantum Gravity. Preprint (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.