×

Continuation criterion for solutions to the Einstein equations. (English) Zbl 1533.83006

Summary: We prove a continuation condition in the context of 3 + 1 dimensional vacuum Einstein gravity in Constant Mean extrinsic Curvature (CMC) gauge. More precisely, we obtain quantitative criteria under which the physical spacetime can be extended in the future indefinitely as a solution to the Cauchy problem of the Einstein equations given regular initial data. In particular, we show that a gauge-invariant \(H^2\) Sobolev norm of the spacetime Riemann curvature remains bounded in the future time direction provided the so-called deformation tensor of the unit timelike vector field normal to the chosen CMC hypersurfaces verifies a spacetime \(L^\infty\) bound. To this end, we implement a novel technique to obtain this refined estimate by using Friedlander’s parametrix for tensor wave equations on curved spacetime and Moncrief’s subsequent improvement. We conclude by providing a physical explanation of our result as well as its relation to the issues of determinism and weak cosmic censorship.
©2024 American Institute of Physics

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
35Q75 PDEs in connection with relativity and gravitational theory
83C75 Space-time singularities, cosmic censorship, etc.
53Z05 Applications of differential geometry to physics

References:

[1] Choquet-Bruhat, Y., General Relativity and the Einstein Equations, 2008, Oxford University Press: Oxford University Press, Oxford
[2] Andersson, L.; Moncrief, V., Elliptic-hyperbolic systems and the Einstein equations, Ann. Henri Poincaré, 4, 1-34, 2003 · Zbl 1028.83005 · doi:10.1007/s00023-003-0120-1
[3] Grillakis, M. G., Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. Math., 132, 485-509, 1990 · Zbl 0736.35067 · doi:10.2307/1971427
[4] Struwe, M., Globally regular solutions to the u^5 Klein-Gordon equation, Ann. Sc. Norm. Super. Pisa-Cl. Sci., 15, 495-513, 1988 · Zbl 0728.35072
[5] Jörgens, K., Das Anfangswertproblem in Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z., 77, 295-308, 1961 · Zbl 0111.09105 · doi:10.1007/bf01180181
[6] Rauch, J., The u^5 Klein-Gordon equation, Nonlinear Partial Differential Equations and Their Applications, 1, 335-364, 1981, Elsevier · Zbl 0473.35055
[7] Pelinovsky, D.; Sakovich, A., Global well-posedness of the short-pulse and sine-Gordon equations in energy space, Commun. Partial Differ. Equ., 35, 613-629, 2010 · Zbl 1204.35010 · doi:10.1080/03605300903509104
[8] Eardley, D. M.; Moncrief, V., The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space, Commun. Math. Phys., 83, 171-191, 1982 · Zbl 0496.35061 · doi:10.1007/bf01976040
[9] Eardley, D. M.; Moncrief, V., The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space: II. Completion of proof, Commun. Math. Phys., 83, 193-212, 1982 · Zbl 0496.35062 · doi:10.1007/bf01976041
[10] Chruściel, P.; Shatah, J., Global existence of solutions of the Yang-Mills equations on globally hyperbolic four dimensional Lorentzian manifolds, Asian J. Math., 1, 530-548, 1997 · Zbl 0912.58039 · doi:10.4310/ajm.1997.v1.n3.a4
[11] Ghanem, S., The global non-blow-up of the Yang-Mills curvature on curved space-times, J. Hyperbolic Differ. Equ., 13, 603-631, 2016 · Zbl 1355.35156 · doi:10.1142/s0219891616500156
[12] Krieger, J.; Schlag, W.; Tataru, D., Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math., 171, 543-615, 2008 · Zbl 1139.35021 · doi:10.1007/s00222-007-0089-3
[13] Christodoulou, D., The Formation of Shocks in 3-dimensional Fluids, 2, 2007, European Mathematical Society · Zbl 1117.35001
[14] Penrose, R., The question of cosmic censorship, J. Astrophys. Astron., 20, 233-248, 1999 · doi:10.1007/bf02702355
[15] Christodoulou, D.; Klainerman, S., The global nonlinear stability of the Minkowski space, 1-29, 1993, Numdum · Zbl 0827.53055
[16] Bieri, L., An extension of the stability theorem of the Minkowski space in general relativity, J. Differ. Geom., 86, 17-70, 2010 · Zbl 1213.83025 · doi:10.4310/jdg/1299766683
[17] Zipser, N., The Global Nonlinear Stability of the Trivial Solution of the Einstein-Maxwell Equations, 2000, Harvard University
[18] LeFloch, P. G.; Ma, Y., The Euclidian-hyperboidal foliation method and the nonlinear stability of Minkowski spacetime, 2017
[19] Bigorgne, L.; Fajman, D.; Joudioux, J.; Smulevici, J.; Thaller, M., Asymptotic stability of Minkowski space-time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal., 242, 1-147, 2021 · Zbl 1471.83003 · doi:10.1007/s00205-021-01639-2
[20] Liu, C.; Wang, J., A new symmetric hyperbolic formulation and the local Cauchy problem for the Einstein-Yang-Mills system in the temporal gauge, 2021
[21] Liu, C.; Oliynyk, T.; Wang, J., Global existence and stability of de Sitter-like solutions to the Einstein-Yang-Mills equations in spacetime dimensions n ≥ 4, 2022
[22] Fajman, D.; Wyatt, Z., Attractors of the Einstein-Klein-Gordon system, Commun. Partial Differ. Equ., 46, 1-30, 2021 · Zbl 1462.35386 · doi:10.1080/03605302.2020.1817072
[23] Andersson, L.; Fajman, D., Nonlinear stability of the Milne model with matter, Commun. Math. Phys., 378, 261-298, 2020 · Zbl 1443.53039 · doi:10.1007/s00220-020-03745-w
[24] Branding, V.; Fajman, D.; Kröncke, K., Stable cosmological Kaluza-Klein spacetimes, Commun. Math. Phys., 368, 1087-1120, 2019 · Zbl 1416.35266 · doi:10.1007/s00220-019-03319-5
[25] Mondal, P.; Yau, S.-T., Radiation estimates of the Minkowski space: Coupled Einstein-Yang-Mills perturbations, 2022
[26] Tipler, F. J., On the nature of singularities in general relativity, Phys. Rev. D, 15, 942, 1977 · doi:10.1103/physrevd.15.942
[27] Mondal, P., On the non-blow up of energy critical nonlinear massless scalar fields in ‘3+1’ dimensional globally hyperbolic spacetimes: Light cone estimates, Ann. Math. Sci. Appl., 6, 225-306, 2021 · Zbl 1483.83021 · doi:10.4310/amsa.2021.v6.n2.a5
[28] Anderson, M. T., On long-time evolution in general relativity and geometrization of 3-manifolds, Commun. Math. Phys., 222, 533-567, 2001 · Zbl 1021.83006 · doi:10.1007/s002200100527
[29] Chen, B.-L.; Lefloch, P. G., Local foliations and optimal regularity of Einstein spacetimes, J. Geom. Phys., 59, 913-941, 2009 · Zbl 1179.53069 · doi:10.1016/j.geomphys.2009.04.002
[30] Klainerman, S.; Rodnianski, I., On the breakdown criterion in general relativity, J. Am. Math. Soc., 23, 345-382, 2009 · Zbl 1203.35084 · doi:10.1090/s0894-0347-09-00655-9
[31] Shao, A., On breakdown criteria for nonvacuum Einstein equations, Ann. Henri Poincaré, 12, 205-277, 2011 · Zbl 1215.83020 · doi:10.1007/s00023-011-0082-7
[32] Wang, Q., Improved breakdown criterion for Einstein vacuum equations in CMC gauge, Commun. Pure Appl. Math., 65, 21-76, 2012 · Zbl 1248.83009 · doi:10.1002/cpa.20388
[33] Klainerman, S.; Rodnianski, I., A Kirchoff-Sobolev parametrix for the wave equation and applications, J. Hyperbolic Differ. Equ., 04, 401-433, 2007 · Zbl 1148.35042 · doi:10.1142/s0219891607001203
[34] Moncrief, V., An integral equation for spacetime curvature in general relativity, Surv. Differ. Geom., 10, 109-146, 2005 · Zbl 1153.83018 · doi:10.4310/sdg.2005.v10.n1.a5
[35] Moncrief, V.; Mondal, P., Could the universe have an exotic topology?, Pure Appl. Math. Q., 15, 921-966, 2019 · Zbl 1437.83167 · doi:10.4310/pamq.2019.v15.n3.a7
[36] Chen, B.; LeFloch, P. G., Injectivity radius of Lorentzian manifolds, Commun. Math. Phys., 278, 679-713, 2008 · Zbl 1156.53040 · doi:10.1007/s00220-008-0412-x
[37] LeFloch, P. G., Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature, Sémin. Théor. Spectrale Géom., 26, 77-90, 2008 · Zbl 1191.53052 · doi:10.5802/tsg.261
[38] Klainerman, S.; Rodnianski, I., Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math., 159, 437-529, 2005 · Zbl 1136.58018 · doi:10.1007/s00222-004-0365-4
[39] Klainerman, S.; Rodnianski, I., On the radius of injectivity of null hypersurfaces, J. Am. Math. Soc., 21, 775-795, 2008 · Zbl 1198.53057 · doi:10.1090/s0894-0347-08-00592-4
[40] Klainerman, S.; Rodnianski, I., Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, GAFA Geom. Funct. Anal., 16, 164-229, 2006 · Zbl 1206.35081 · doi:10.1007/s00039-006-0557-8
[41] Friedlander, G. F., The Wave Equation on a Curved Spacetime, 2, 1976, Cambridge University Press
[42] Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20, 479-495, 1984 · Zbl 0576.53028 · doi:10.4310/jdg/1214439291
[43] Andersson, L.; Moncrief, V., Future complete vacuum spacetimes, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, 299-330, 2004, Springer · Zbl 1105.83001
[44] Ringström, H., The Cauchy Problem in General Relativity, 6, 2009, European Mathematical Society · Zbl 1169.83003
[45] Klainerman, S., The null condition and global existence to nonlinear wave equations, Lect. Appl. Math., 23, 111-117, 1986 · Zbl 0599.35105
[46] Wang, M. T.; Yau, S. T., Isometric embeddings into the Minkowski space and new quasi-local mass, Commun. Math. Phys., 288, 919-942, 2009 · Zbl 1195.53039 · doi:10.1007/s00220-009-0745-0
[47] Christodoulou, D., The Formation of Black Holes in General Relativity, 2012, European Mathematical Society
[48] Hawking, S. W.; Penrose, R., The singularities of gravitational collapse and cosmology, Proc. R. Soc. London, Ser. A, 314, 1519, 529-548, 1970 · Zbl 0954.83012 · doi:10.1098/rspa.1970.0021
[49] W Gibbons, G.; W Hawking, S., Euclidean Quantum Gravity, 1993, World Scientific · Zbl 0874.53056
[50] Loll, R., Quantum gravity from causal dynamical triangulations: A review, Classical Quantum Gravity, 37, 013002, 2019 · Zbl 1478.83095 · doi:10.1088/1361-6382/ab57c7
[51] Grimmer, D., A discrete analog of general covariance-Part 1: Could the world be fundamentally set on a lattice?, 2022
[52] Chrusciel, P. T.; Isenberg, J.; Moncrief, V., Strong cosmic censorship in polarised Gowdy spacetimes, Classical Quantum Gravity, 7, 1671-1680, 1990 · Zbl 0703.53081 · doi:10.1088/0264-9381/7/10/003
[53] Moncrief, V., Global properties of Gowdy spacetimes with T^3 × R topology, Ann. Phys., 132, 87-107, 1981 · doi:10.1016/0003-4916(81)90270-0
[54] Choquet-Bruhat, Y.; Moncrief, V., Nonlinear stability of an expanding universe with the S^1 isometry group, Partial Differential Equations and Mathematical Physics, 57-71, 2003, Springer · Zbl 1062.35149
[55] Choquet-Bruhat, Y.; Moncrief, V., Future global in time Einsteinian spacetimes with U(1) isometry group, Ann. Henri Poincaré, 2, 1007-1064, 2001 · Zbl 0998.83007 · doi:10.1007/s00023-001-8602-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.