×

Method to preserve the chiral-symmetry protection of the zeroth Landau level on a two-dimensional lattice. (English) Zbl 1533.81096

Summary: The spectrum of massless Dirac fermions on the surface of a topological insulator in a perpendicular magnetic field \(B\) contains a \(B\)-independent “zeroth Landau level”, protected by chiral symmetry. If the Dirac equation is discretized on a lattice by the method of “Wilson fermions”, the chiral symmetry is broken and the zeroth Landau level is broadened when \(B\) has spatial fluctuations. We show how this lattice artefact can be avoided starting from an alternative nonlocal discretization scheme introduced by Stacey. A key step is to spatially separate the states of opposite chirality in the zeroth Landau level, by adjoining \(+B\) and \(-B\) regions.

MSC:

81V70 Many-body theory; quantum Hall effect
82D37 Statistical mechanics of semiconductors
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81V74 Fermionic systems in quantum theory
81R25 Spinor and twistor methods applied to problems in quantum theory
70F05 Two-body problems
78A30 Electro- and magnetostatics
39A12 Discrete version of topics in analysis
81R40 Symmetry breaking in quantum theory
35Q56 Ginzburg-Landau equations

References:

[1] Nielsen, H. B.; Ninomiya, M., Phys. Lett. B, 105, 219 (1981)
[2] Wilson, K. G., Phys. Rev. D, 10, 2445 (1974)
[3] Kogut, J.; Susskind, L., Phys. Rev. D, 11, 395 (1975)
[4] Susskind, L., Phys. Rev. D, 16, 3031 (1977)
[5] Stacey, R., Phys. Rev. D, 26, 468 (1982)
[6] Stacey, R., Z. Phys. C, 19, 75 (1983)
[7] Griffin, C. J.; Kieu, T. D., Phys. Rev. Lett., 70, 3844 (1993)
[8] D. Tong, Lattice Gauge Theory, Lecture notes at https://www.damtp.cam.ac.uk/user/tong/gaugetheory.html.
[9] Bernevig, B. A.; Hughes, T. L., Topological Insulators and Topological Superconductors (2013), Princeton · Zbl 1269.82001
[10] Rabi, I. I., Z. Phys., 49, 507 (1928) · JFM 54.0975.01
[11] McClure, J. W., Phys. Rev., 104, 666 (1956)
[12] Cheng, Peng; Song, Canli; Zhang, Tong; Zhang, Yanyi; Wang, Yilin; Jia, Jin-Feng; Wang, Jing; Wang, Yayu; Zhu, Bang-Fen; Chen, Xi; Ma, Xucun; He, Ke; Wang, Lili; Dai, Xi; Fang, Zhong; Xie, Xincheng; Qi, Xiao-Liang; Liu, Chao-Xing; Zhang, Shou-Cheng; Xue, Qi-Kun, Phys. Rev. Lett., 105, Article 076801 pp. (2010)
[13] Hanaguri, T.; Igarashi, K.; Kawamura, M.; Takagi, H.; Sasagawa, T., Phys. Rev. B, 82, Article 081305 pp. (2010)
[14] Jiang, Yeping; Wang, Yilin; Chen, Mu; Li, Zhi; Song, Canli; He, Ke; Wang, Lili; Chen, Xi; Ma, Xucun; Xue, Qi-Kun, Phys. Rev. Lett., 108, Article 016401 pp. (2012)
[15] Chong, S. K.; Tsuchikawa, R.; Harmer, J.; Sparks, T. D.; Deshpande, V. V., ACS Nano, 14, 1158 (2020)
[16] Giesbers, A. J.M.; Zeitler, U.; Katsnelson, M. I.; Ponomarenko, L. A.; Mohiuddin, T. M.; Maan, J. C., Phys. Rev. Lett., 99, Article 206803 pp. (2007)
[17] Chiu, C.-K.; Teo, J. C.Y.; Schnyder, A. P.; Ryu, S., Rev. Modern Phys., 88, Article 035005 pp. (2016)
[18] Aharonov, Y.; Casher, A., Phys. Rev. A, 19, 2461 (1979)
[19] Alvarez-Gaumé, L., Comm. Math. Phys., 90, 161 (1983) · Zbl 0528.58034
[20] Katsnelson, M. I., Graphene — Carbon in Two Dimensions (2012), Cambridge
[21] Pacholski, M. J.; Lemut, G.; Tworzydło, J.; Beenakker, C. W.J., SciPost Phys., 11, 105 (2021)
[22] Bruckmann, F.; Endrődi, G.; Giordano, M.; Katz, S. D.; Kovács, T. G.; Pittler, F.; Wellnhofer, J., Phys. Rev. D, 96, Article 074506 pp. (2017)
[23] Bali, G. S.; Brandt, B. B.; Endrodi, G.; Glaessle, B., Phys. Rev. D, 97, Article 034505 pp. (2018)
[24] Pötz, W., Phys. Rev. E, 96, Article 053312 pp. (2017)
[25] Donís Vela, A.; Lemut, G.; Pacholski, M. J.; Tworzydło, J.; Beenakker, C. W.J., J. Phys.: Condens. Matter, 34, Article 364003 pp. (2022)
[26] Donís Vela, A.; Pacholski, M. J.; Lemut, G.; Tworzydło, J.; Beenakker, C. W.J., Ann. Phys., 534, Article 2200206 pp. (2022) · Zbl 07770789
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.