×

Algorithms for coloring reconfiguration under recolorability constraints. (English) Zbl 1533.68262

Hsu, Wen-Lian (ed.) et al., 29th international symposium on algorithms and computation, ISAAC 2018, December 16–19, 2018, Jiaoxi, Yilan, Taiwan. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 123, Article 37, 13 p. (2018).
Summary: Coloring reconfiguration is one of the most well-studied reconfiguration problems. In the problem, we are given two (vertex-)colorings of a graph using at most \(k\) colors, and asked to determine whether there exists a transformation between them by recoloring only a single vertex at a time, while maintaining a \(k\)-coloring throughout. It is known that this problem is solvable in linear time for any graph if \(k\le 3\), while is PSPACE-complete for a fixed \(k\ge 4\). In this paper, we further investigate the problem from the viewpoint of recolorability constraints, which forbid some pairs of colors to be recolored directly. More specifically, the recolorability constraint is given in terms of an undirected graph \(R\) such that each node in \(R\) corresponds to a color, and each edge in \(R\) represents a pair of colors that can be recolored directly. In this paper, we give a linear-time algorithm to solve the problem under such a recolorability constraint if \(R\) is of maximum degree at most two. In addition, we show that the minimum number of recoloring steps required for a desired transformation can be computed in linear time for a yes-instance. We note that our results generalize the known positive ones for coloring reconfiguration.
For the entire collection see [Zbl 1407.68036].

MSC:

68R10 Graph theory (including graph drawing) in computer science
05C15 Coloring of graphs and hypergraphs
05C85 Graph algorithms (graph-theoretic aspects)
68W40 Analysis of algorithms
Full Text: DOI

References:

[1] Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions. Eur. J. Comb., 69:200-213, 2018. doi:10.1016/j.ejc.2017.10.010. · Zbl 1376.05048 · doi:10.1016/j.ejc.2017.10.010
[2] Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël Paulusma. Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. J. Comb. Optim., 27(1):132-143, 2014. doi:10.1007/s10878-012-9490-y. · Zbl 1284.05089 · doi:10.1007/s10878-012-9490-y
[3] Paul S. Bonsma and Luis Cereceda. Finding Paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci., 410(50):5215-5226, 2009. doi:10.1016/j.tcs.2009.08.023. · Zbl 1177.05112 · doi:10.1016/j.tcs.2009.08.023
[4] Paul S. Bonsma, Amer E. Mouawad, Naomi Nishimura, and Venkatesh Raman. The Com-plexity of Bounded Length Graph Recoloring and CSP Reconfiguration. In Marek Cygan and Pinar Heggernes, editors, Parameterized and Exact Computation -9th International Symposium, IPEC 2014, Wroclaw, Poland, September 10-12, 2014. Revised Selected Pa-pers, volume 8894 of Lecture Notes in Computer Science, pages 110-121. Springer, 2014. doi:10.1007/978-3-319-13524-3_10. · Zbl 1456.68065 · doi:10.1007/978-3-319-13524-3_10
[5] Paul S. Bonsma and Daniël Paulusma. Using Contracted Solution Graphs for Solving Reconfiguration Problems. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 -Kraków, Poland, volume 58 of LIPIcs, pages 20:1-20:15. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.MFCS. 2016.20. · Zbl 1398.90188 · doi:10.4230/LIPIcs.MFCS.2016.20
[6] Richard C. Brewster, Sean McGuinness, Benjamin Moore, and Jonathan A. Noel. A dicho-tomy theorem for circular colouring reconfiguration. Theor. Comput. Sci., 639:1-13, 2016. doi:10.1016/j.tcs.2016.05.015. · Zbl 1345.05026 · doi:10.1016/j.tcs.2016.05.015
[7] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths between 3-colorings. Journal of Graph Theory, 67(1):69-82, 2011. doi:10.1002/jgt.20514. · Zbl 1216.05154 · doi:10.1002/jgt.20514
[8] Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The List Coloring Reconfiguration Prob-lem for Bounded Pathwidth Graphs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 98-A(6):1168-1178, 2015. URL: http://search. ieice.org/bin/summary.php?id=e98-a_6_1168, doi:10.1587/transfun.E98.A.1168. · Zbl 1431.68048 · doi:10.1587/transfun.E98.A.1168
[9] Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. Parameterized complexity of the list coloring reconfiguration problem with graph parameters. Theor. Comput. Sci., 739:65-79, 2018. doi:10.1016/j.tcs.2018.05.005. · Zbl 1395.68153 · doi:10.1016/j.tcs.2018.05.005
[10] Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical Society Lecture Note Series, pages 127-160. Cambridge University Press, 2013. doi:10. 1017/CBO9781139506748.005. · Zbl 1307.05005 · doi:10.1017/CBO9781139506748.005
[11] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor. Comput. Sci., 412(12-14):1054-1065, 2011. doi:10.1016/j.tcs.2010.12.005. · Zbl 1207.68166 · doi:10.1016/j.tcs.2010.12.005
[12] Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël Paulusma. Finding Shortest Paths Between Graph Colourings. Algorithmica, 75(2):295-321, 2016. doi:10.1007/s00453-015-0009-7. · Zbl 1350.68148 · doi:10.1007/s00453-015-0009-7
[13] Naomi Nishimura. Introduction to Reconfiguration. Algorithms, 11(4):52, 2018. doi: 10.3390/a11040052. · Zbl 1461.68164 · doi:10.3390/a11040052
[14] Hiroki Osawa, Akira Suzuki, Takehiro Ito, and Xiao Zhou. Complexity of Coloring Reconfig-uration under Recolorability Constraints. In Yoshio Okamoto and Takeshi Tokuyama, edit-ors, 28th International Symposium on Algorithms and Computation, ISAAC 2017, Decem-ber 9-12, 2017, Phuket, Thailand, volume 92 of LIPIcs, pages 62:1-62:12. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ISAAC.2017.62. 37:13 · Zbl 1457.68224 · doi:10.4230/LIPIcs.ISAAC.2017.62
[15] Marcin Wrochna. Homomorphism Reconfiguration via Homotopy. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 730-742. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2015. doi: 10.4230/LIPIcs.STACS.2015.730. · Zbl 1356.68111 · doi:10.4230/LIPIcs.STACS.2015.730
[16] Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst. Sci., 93:1-10, 2018. doi:10.1016/j.jcss.2017.11.003. · Zbl 1382.68183 · doi:10.1016/j.jcss.2017.11.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.