×

On the complexity of solution extension of optimization problems. (English) Zbl 1533.68217

Summary: The question if a given partial solution to a problem can be extended reasonably occurs in many algorithmic approaches for optimization problems. For instance, when enumerating minimal vertex covers of a graph \(G = (V, E)\), one usually arrives at the problem to decide for a vertex set \(U \subseteq V\) (pre-solution), if there exists a minimal vertex cover \(S\) (i.e., a vertex cover \(S \subseteq V\) such that no proper subset of \(S\) is a vertex cover) with \(U \subseteq S\) (minimal extension of \(U\)). We propose a general, partial-order based formulation of such extension problems which allows to model parameterization and approximation aspects of extension, and also highlights relationships between extension tasks for different specific problems. As examples, we study a number of specific problems which can be expressed and related in this framework.
In particular, we discuss extension variants of the problems dominating set and feedback vertex/edge set. All these problems are shown to be \(\mathsf{NP} \)-complete even when restricted to bipartite graphs of bounded degree, with the exception of our extension version of feedback edge set on undirected graphs which is shown to be solvable in polynomial time. For the extension variants of dominating and feedback vertex set, we also show \(\mathsf{NP} \)-completeness for the restriction to planar graphs of bounded degree. As non-graph problem, we also study an extension version of the bin packing problem. We further consider the parameterized complexity of all these extension variants, where the parameter is a measure of the pre-solution as defined by our framework.

MSC:

68R10 Graph theory (including graph drawing) in computer science
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68Q27 Parameterized complexity, tractability and kernelization
90C27 Combinatorial optimization

References:

[1] Arora, S.; Barak, B., Computational Complexity - A Modern Approach (2009), Cambridge University Press · Zbl 1193.68112
[2] Bazgan, C.; Brankovic, L.; Casel, K.; Fernau, H., Domination chain: characterisation, classical complexity, parameterised complexity and approximability, Discrete Appl. Math., 280, 23-42 (2020) · Zbl 1439.05174
[3] Bazgan, C.; Brankovic, L.; Casel, K.; Fernau, H.; Jansen, K.; Klein, K.; Lampis, M.; Liedloff, M.; Monnot, J.; Paschos, V. T., The many facets of upper domination, Theor. Comput. Sci., 717, 2-25 (2018) · Zbl 1388.68099
[4] Bläsius, T.; Friedrich, T.; Lischeid, J.; Meeks, K.; Schirneck, M., Efficiently enumerating hitting sets of hypergraphs arising in data profiling, (Kobourov, S. G.; Meyerhenke, H., Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments. Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments, ALENEX (2019), SIAM), 130-143 · Zbl 1430.68178
[5] Boros, E.; Elbassioni, K. M.; Gurvich, V.; Khachiyan, L.; Makino, K., On generating all minimal integer solutions for a monotone system of linear inequalities, (Orejas, F.; Spirakis, P. G.; van Leeuwen, J., Automata, Languages and Programming, 28th International Colloquium, ICALP. Automata, Languages and Programming, 28th International Colloquium, ICALP, Lecture Notes in Computer Science, vol. 2076 (2001), Springer), 92-103 · Zbl 0986.90024
[6] Boros, E.; Gurvich, V.; Hammer, P. L., Dual subimplicants of positive Boolean functions, Optim. Methods Softw., 10, 2, 147-156 (1998) · Zbl 0972.90048
[7] Boros, E.; Gurvich, V.; Khachiyan, L.; Makino, K., Dual-bounded generating problems: partial and multiple transversals of a hypergraph, SIAM J. Comput., 30, 6, 2036-2050 (2000) · Zbl 0980.68077
[8] Bruchertseifer, J.; Fernau, H., Synchronizing series-parallel automata with loops, (Freund, R.; Holzer, M.; Sempere, J. M., Eleventh Workshop on Non-Classical Models of Automata and Applications, NCMA (2019), Österreichische Computer Gesellschaft), 63-78
[9] Bruchertseifer, J.; Fernau, H., Synchronizing words and monoid factorization: a parameterized perspective, (Chen, J.; Feng, Q.; Xu, J., 16th Annual Conference on Theory and Applications of Models of Computation, TAMC. 16th Annual Conference on Theory and Applications of Models of Computation, TAMC, Lecture Notes in Computer Science, vol. 12337 (2020), Springer), 352-364 · Zbl 1517.68142
[10] Casel, K.; Fernau, H.; Ghadikolaei, M. K.; Monnot, J.; Sikora, F., Extension of some edge graph problems: standard and parameterized complexity, (Gasieniec, L. A.; Jansson, J.; Levcopoulos, C., Fundamentals of Computation Theory - 22nd International Symposium, FCT. Fundamentals of Computation Theory - 22nd International Symposium, FCT, Lecture Notes in Computer Science, vol. 11651 (2019), Springer), 185-200 · Zbl 1441.68170
[11] Casel, K.; Fernau, H.; Ghadikolaei, M. K.; Monnot, J.; Sikora, F., Extension of vertex cover and independent set in some classes of graphs, (Heggernes, P., Algorithms and Complexity - 11th International Conference, CIAC. Algorithms and Complexity - 11th International Conference, CIAC, Lecture Notes in Computer Science, vol. 11485 (2019), Springer), 124-136 · Zbl 1525.68093
[12] Casel, K.; Fernau, H.; Ghadikolaei, M. K.; Monnot, J.; Sikora, F., Abundant extensions, (Calamoneri, T.; Corò, F., Algorithms and Complexity - 12th International Conference, CIAC. Algorithms and Complexity - 12th International Conference, CIAC, Lecture Notes in Computer Science, vol. 12701 (2021), Springer), 3-17
[13] Chen, J.; Zhang, F., On product covering in 3-tier supply chain models: natural complete problems for W[3] and W[4], Theor. Comput. Sci., 363, 3, 278-288 (2006) · Zbl 1154.68055
[14] Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.; Marx, D.; Pilipczuk, M.; Pilipczuk, M.; Saurabh, S., Parameterized Algorithms (2015), Springer · Zbl 1334.90001
[15] Damaschke, P., Parameterized enumeration, transversals, and imperfect phylogeny reconstruction, Theor. Comput. Sci., 351, 3, 337-350 (2006) · Zbl 1087.68067
[16] Downey, R. G.; Fellows, M. R., Fundamentals of Parameterized Complexity, Texts in Computer Science (2013), Springer · Zbl 1358.68006
[17] Fernau, H., On parameterized enumeration, (Ibarra, O. H.; Zhang, L., Computing and Combinatorics, COCOON. Computing and Combinatorics, COCOON, Lecture Notes in Computer Science, vol. 2387 (2002), Springer), 564-573 · Zbl 1077.68658
[18] Fernau, H.; Hoffmann, S., Extensions to minimal synchronizing words, J. Autom. Lang. Comb., 24, 287-307 (2019) · Zbl 1429.68111
[19] Garey, M. R.; Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness (1979), W.H. Freeman & Co.: W.H. Freeman & Co. New York, NY, USA · Zbl 0411.68039
[20] Gavril, F., Some NP-complete problems on graphs, (Proc. Conf. on Inform. Sci. and Systems. Proc. Conf. on Inform. Sci. and Systems, 1977 (1977)), 91-95
[21] Ghadikolaei, M. K.; Melissinos, N.; Monnot, J.; Pagourtzis, A., Extension and its price for the connected vertex cover problem, (Colbourn, C. J.; Grossi, R.; Pisanti, N., Combinatorial Algorithms - 30th International Workshop, IWOCA. Combinatorial Algorithms - 30th International Workshop, IWOCA, Lecture Notes in Computer Science, vol. 11638 (2019), Springer), 315-326 · Zbl 1533.68242
[22] Golovach, P. A.; Heggernes, P.; Kanté, M. M.; Kratsch, D.; Villanger, Y., Enumerating minimal dominating sets in chordal bipartite graphs, Discrete Appl. Math., 199, 30-36 (2016) · Zbl 1326.05105
[23] Golovach, P. A.; Heggernes, P.; Kanté, M. M.; Kratsch, D.; Villanger, Y., Minimal dominating sets in interval graphs and trees, Discrete Appl. Math., 216, 162-170 (2017) · Zbl 1350.05121
[24] Golovach, P. A.; Heggernes, P.; Kratsch, D.; Villanger, Y., An incremental polynomial time algorithm to enumerate all minimal edge dominating sets, Algorithmica, 72, 3, 836-859 (2015) · Zbl 1330.05118
[25] Hromkovic, J., Algorithmics for Hard Problems - Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, Texts in Theoretical Computer Science. An EATCS Series (2004), Springer · Zbl 1113.68001
[26] Impagliazzo, R.; Paturi, R.; Zane, F., Which problems have strongly exponential complexity?, J. Comput. Syst. Sci., 63, 4, 512-530 (2001) · Zbl 1006.68052
[27] Kanté, M. M.; Limouzy, V.; Mary, A.; Nourine, L.; Uno, T., Polynomial delay algorithm for listing minimal edge dominating sets in graphs, (Dehne, F.; Sack, J.; Stege, U., Workshop on Algorithms and Data Structures, WADS. Workshop on Algorithms and Data Structures, WADS, Lecture Notes in Computer Science, vol. 9214 (2015), Springer), 446-457 · Zbl 1451.68204
[28] Kanté, M. M.; Limouzy, V.; Mary, A.; Nourine, L.; Uno, T., A polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs, (Mayr, E. W., International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015. International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015, Lecture Notes in Computer Science, vol. 9224 (2016), Springer), 138-153 · Zbl 1417.05215
[29] Karp, R. M., Reducibility among combinatorial problems, (Miller, R. E.; Thatcher, J. W., Proceedings of a Symposium on the Complexity of Computer Computations. Proceedings of a Symposium on the Complexity of Computer Computations, The IBM Research Symposia Series (1972), Plenum Press: Plenum Press New York), 85-103 · Zbl 1467.68065
[30] Khachiyan, L.; Boros, E.; Elbassioni, K. M.; Gurvich, V., On enumerating minimal dicuts and strongly connected subgraphs, Algorithmica, 50, 1, 159-172 (2008) · Zbl 1203.68122
[31] Khachiyan, L. G.; Boros, E.; Elbassioni, K. M.; Gurvich, V.; Makino, K., On the complexity of some enumeration problems for matroids, SIAM J. Discrete Math., 19, 4, 966-984 (2005) · Zbl 1104.05017
[32] Kratochvíl, J., A special planar satisfiability problem and a consequence of its NP-completeness, Discrete Appl. Math., 52, 233-252 (1994) · Zbl 0810.68083
[33] Lawler, E. L.; Lenstra, J. K.; Kan, A. H.G. R., Generating all maximal independent sets: NP-hardness and polynomial-time algorithms, SIAM J. Comput., 9, 558-565 (1980) · Zbl 0445.68054
[34] Lucchesi, C. L.; Younger, D. H., A minimax theorem for directed graphs, J. Lond. Math. Soc., 2, 17, 369-374 (1978) · Zbl 0392.05029
[35] Manlove, D. F., Minimaximal and maximinimal optimisation problems: a partial order-based approach (1998), University of Glasgow, Computing Science, PhD thesis
[36] Mary, A., Énumération des dominants minimaux d’un graphe (Nov. 2013), LIMOS, Université Blaise Pascal: LIMOS, Université Blaise Pascal Clermont-Ferrand, France, PhD thesis
[37] Mary, A.; Strozecki, Y., Efficient enumeration of solutions produced by closure operations, Discrete Math. Theor. Comput. Sci., 21, 3 (2019) · Zbl 1417.05010
[38] Moon, J. W.; Moser, L., On cliques in graphs, Isr. J. Math., 3, 23-28 (1965) · Zbl 0144.23205
[39] Schwikowski, B.; Speckenmeyer, E., On enumerating all minimal solutions of feedback problems, Discrete Appl. Math., 117, 253-265 (2002) · Zbl 1004.68122
[40] Sipser, M., The history and status of the P versus NP question, (Kosaraju, S. R.; Fellows, M.; Wigderson, A.; Ellis, J. A., Proceedings of the 24th Annual ACM Symposium on Theory of Computing. Proceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC (1992), ACM), 603-618
[41] Speckenmeyer, E., On feedback vertex sets and nonseparating independent sets in cubic graphs, J. Graph Theory, 12, 3, 405-412 (1988) · Zbl 0657.05042
[42] Strozecki, Y., Enumeration complexity, Bull. Eur. Assoc. Theor. Comput. Sci., 129 (2019) · Zbl 1428.68227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.