×

Threshold for the expected measure of random polytopes. (English) Zbl 1533.60016

Summary: Let \(\mu\) be a log-concave probability measure on \({\mathbb{R}}^n\) and for any \(N> n\) consider the random polytope \(K_N=\operatorname{conv}\{X_1,\dots ,X_N\} \), where \(X_1,X_2,\dots\) are independent random points in \({\mathbb{R}}^n\) distributed according to \(\mu \). We study the question if there exists a threshold for the expected measure of \(K_N\). Our approach is based on the Cramer transform \(\Lambda_{\mu}^*\) of \(\mu \). We examine the existence of moments of all orders for \(\Lambda_{\mu}^*\) and establish, under some conditions, a sharp threshold for the expectation \({\mathbb{E}}_{\mu^N}[\mu (K_N)]\) of the measure of \(K_N\): it is close to 0 if \(\ln N\ll{\mathbb{E}}_{\mu}(\Lambda_{\mu}^*)\) and close to 1 if \(\ln N\gg{\mathbb{E}}_{\mu}(\Lambda_{\mu}^*)\). The main condition is that the parameter \(\beta (\mu )=\mathrm{Var}_{\mu}(\Lambda_{\mu}^*)/({\mathbb{E}}_{\mu}(\Lambda_{\mu}^*))^2\) should be small.

MSC:

60D05 Geometric probability and stochastic geometry
60E15 Inequalities; stochastic orderings
62H05 Characterization and structure theory for multivariate probability distributions; copulas
52A22 Random convex sets and integral geometry (aspects of convex geometry)
52A23 Asymptotic theory of convex bodies

References:

[1] Artin, E.: The gamma function, Athena Series: Selected Topics in Mathematics. Holt, Rinehart and Winston, New York, vii+39 pp (1964) · Zbl 0144.06802
[2] Artstein-Avidan, S., Giannopoulos, A., Milman, V. D.: Asymptotic Geometric Analysis, vol. I, Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015) · Zbl 1337.52001
[3] Bonnet, G., Chasapis, G., Grote, J., Temesvari, D., Turchi, N.: Threshold phenomena for high-dimensional random polytopes. Commun. Contemp. Math. 21(5), 1850038 (2019) · Zbl 1423.52007
[4] Bonnet, G.; Kabluchko, Z.; Turchi, N., Phase transition for the volume of high-dimensional random polytopes, Random Struct. Algorithms, 58, 4, 648-663 (2021) · Zbl 1529.60020 · doi:10.1002/rsa.20986
[5] Borell, C., Complements of Lyapunov’s inequality, Math. Ann., 205, 323-331 (1973) · Zbl 0248.26011 · doi:10.1007/BF01362702
[6] Borell, C., Convex measures on locally convex spaces, Ark. Mat., 12, 239-252 (1974) · Zbl 0297.60004 · doi:10.1007/BF02384761
[7] Borell, C., Convex set functions in \(d\)-space, Period. Math. Hungar., 6, 111-136 (1975) · Zbl 0274.28009 · doi:10.1007/BF02018814
[8] Bourgain, J.: On the distribution of polynomials on high dimensional convex sets. Lecture Notes in Mathematics, vol. 1469. Springer, Berlin (1991) · Zbl 0773.46013
[9] Brazitikos, S., Giannopoulos, A., Pafis, M.: Half-space depth of log-concave probability measures (preprint) · Zbl 1530.60011
[10] Brazitikos, S.; Giannopoulos, A.; Valettas, P.; Vritsiou, B-H, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs (2014), Providence: American Mathematical Society, Providence · Zbl 1304.52001
[11] Chakraborti, D.; Tkocz, T.; Vritsiou, B-H, A note on volume thresholds for random polytopes, Geom. Dedicata, 213, 423-431 (2021) · Zbl 1467.52012 · doi:10.1007/s10711-020-00589-5
[12] Chen, Y., An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom. Funct. Anal., 31, 34-61 (2021) · Zbl 1495.52003 · doi:10.1007/s00039-021-00558-4
[13] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications (1998), New York: Springer, New York · Zbl 0896.60013 · doi:10.1007/978-1-4612-5320-4
[14] Dyer, ME; Füredi, Z.; McDiarmid, C., Volumes spanned by random points in the hypercube, Random Struct. Algorithms, 3, 91-106 (1992) · Zbl 0755.60013 · doi:10.1002/rsa.3240030107
[15] Fradelizi, M., Sections of convex bodies through their centroid, Arch. Math. (Basel), 69, 6, 515-522 (1997) · Zbl 0901.52005 · doi:10.1007/s000130050154
[16] Fradelizi, M., Madiman, M., Wang, L.: Optimal concentration of information content for log-concave densities, High dimensional probability VII, vol. 71. Progr. Probab. Springer, Berlin, pp. 45-60 (2016) · Zbl 1358.60036
[17] Frieze, A., Pegden, W., Tkocz, T.: Random volumes in \(d\)-dimensional polytopes. Discrete Anal., Paper No. 15 (2020) · Zbl 1453.52006
[18] Gatzouras, D.; Giannopoulos, A., Threshold for the volume spanned by random points with independent coordinates, Isr. J. Math., 169, 125-153 (2009) · Zbl 1166.52009 · doi:10.1007/s11856-009-0007-z
[19] Guédon, O.; Milman, E., Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures, Geom. Funct. Anal., 21, 1043-1068 (2011) · Zbl 1242.60012 · doi:10.1007/s00039-011-0136-5
[20] Ito, K.; McKean, HP, Diffusion Processes and Their Sample Paths (1965), Berlin: Springer, Berlin · Zbl 0127.09503
[21] Klartag, B., On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., 16, 1274-1290 (2006) · Zbl 1113.52014 · doi:10.1007/s00039-006-0588-1
[22] Klartag, B., Lehec, J.: Bourgain’s slicing problem and KLS isoperimetry up to polylog (preprint) · Zbl 1509.52002
[23] Nagy, S.; Schütt, C.; Werner, EM, Halfspace depth and floating body, Stat. Surv., 13, 52-118 (2019) · Zbl 1428.62204 · doi:10.1214/19-SS123
[24] Naor, A.; Romik, D., Projecting the surface measure of the sphere of \(\ell_p^n\), Ann. Inst. H. Poincaré Probab. Stat., 39, 241-261 (2003) · Zbl 1012.60025 · doi:10.1016/S0246-0203(02)00008-0
[25] Nguyen, VH, Dimensional variance inequalities of Brascamp-Lieb type and a local approach to dimensional Prékopa’s theorem, J. Funct. Anal., 266, 931-955 (2014) · Zbl 1292.26055 · doi:10.1016/j.jfa.2013.11.003
[26] Paouris, G.; Valettas, P., Variance estimates and almost Euclidean structure, Adv. Geom., 19, 2, 165-189 (2019) · Zbl 1425.46006 · doi:10.1515/advgeom-2018-0030
[27] Pivovarov, P., Volume thresholds for Gaussian and spherical random polytopes and their duals, Studia Math., 183, 1, 15-34 (2007) · Zbl 1134.52005 · doi:10.4064/sm183-1-2
[28] Rockafellar, RT, Convex analysis, Princeton Mathematical Series (1970), Princeton: Princeton University Press, Princeton · Zbl 0193.18401
[29] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Mathematics and its Applications, vol. 151. Cambridge University Press, Cambridge (2014) · Zbl 1287.52001
[30] Vershynin, R.: High-dimensional probability. An introduction with applications in data science, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 47. Cambridge University Press, Cambridge (2018) · Zbl 1430.60005
[31] Wang, L.: Heat capacity bound, energy fluctuations and convexity, Ph.D. Thesis, Yale University (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.