×

Abbott dimension, mathematics inspired by Flatland. (English) Zbl 1533.54026

The author provides a definition of dimension for topological spaces inspired by notions that appear in the satirical novella, Flatland, by Edwin Abbott that appeared in 1884. Alongside Abbott’s satire of society, there are serious mathematical and geometrical concepts afloat. In particular, he tells a story about residents of a world that consists only of a plane (Flatland) and how they would have to exist in such a realm. A visitor from 3-space would be able to see into them as would a visitor from 4-space be able to see into the denizens of 3-space. So the idea of Siegert is to devise a definition of dimension that would be based on “seeing into.” This is the foundation of what is called the “Abbott dimension,” \(\mathrm{Ab}(X)\), for any nonempty Hausdorff space \(X\) (Definition 11.).
In this paper it is shown that \(\mathrm{Ab}(\mathbb{R}^n)=n\), which is a fundamental requirement of any theory of topological dimension. On the other hand, the author provides a host of examples that show that the dimension \(\mathrm{Ab}\) does not always equal the classical dimension \(\mathrm{dim}\) for separable metrizable spaces even when they are compact (examples of the latter involve hereditarily indecomposable continua).

MSC:

54F45 Dimension theory in general topology

Keywords:

dimension

References:

[1] Abbott, E. (2010). Flatland. Washington, DC: Mathematical Association of America. · Zbl 1189.01075
[2] Bing, R. H. (1948). A homogeneous indecomposable plane continuum. Duke Math. J.15(3): 729-742. DOI: . · Zbl 0035.39103
[3] Bing, R. H. (1951). Concerning hereditarily indecomposable continua. Pac. J. Math.1(1): 43-51. DOI: . · Zbl 0043.16803
[4] Bing, R. H. (1951). Higher-dimensional hereditarily indecomposable continua. Trans. Amer. Math. Soc.71(2): 267-273. DOI: . · Zbl 0043.16901
[5] Brouwer, L. E. J. (1913). Über den naturlichen Dimensionsbegriff. J. Reine Angew. Math. 142: 146-152. DOI: . · JFM 44.0555.01
[6] Engelking, R. (1978). Dimension Theory. Warsaw: North-Holland Mathematical Library. · Zbl 0401.54029
[7] Fedorchuck, V. V. (2003). On the Brouwer dimension of compact spaces. Mat. Zametki. 73(2): 295-304. · Zbl 1027.54052
[8] Henderson, D. (1967). An infinite-dimensional compactum with no positive-dimensional compact subsets. Amer. J. Math. 89(1): 105-121. DOI: . · Zbl 0148.16705
[9] Hurewicz, W., Wallman, H. (1941). Dimension Theory. Princeton, NJ: Princeton Univ. Press. · Zbl 0060.39808
[10] Ingram, W. T., Mahavier, W. S. (2012). Inverse Limits: From Continua to Chaos. New York, NY: Springer. · Zbl 1234.54002
[11] Knaster, B. (1922). Un continu dont tout sous-continu est indécomposable. Fund. Math.3(1): 247-286. DOI: . · JFM 48.0212.01
[12] Knaster, B., Kuratowski, C. (1920). Problem 2. Fund. Math.1(1): 223.
[13] Mazurkiewicz, M. (1921). Problem 14. Fund. Math.2(1): 286.
[14] Moise, E. E., (1948). An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua. Trans. Amer. Math. Soc.63(3): 581-594. DOI: . · Zbl 0031.41801
[15] Nadler, S. B. Jr. (1992). Continuum Theory: An Introduction. New York, NY: Marcel Dekker. · Zbl 0757.54009
[16] Nadler, S. B. Jr. (1978). Hyperspaces of Sets. New York, NY: Marcel Dekker. · Zbl 0432.54007
[17] Pears, A. R. (1975). Dimension Theory of General Spaces. Cambridge: Cambridge Univ. Press. · Zbl 0312.54001
[18] Poincaré, H. (1958). The Value of Science. New York: Dover Publications.
[19] Sierpinski, W. (1916). Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donneé. C. R. Acad. Paris. 162(1): 629-632. · JFM 46.0295.02
[20] Steen, L., Seebach, J. A. (1995). Counterexamples in Topology. Mineola, NY: Dover Publications. · Zbl 1245.54001
[21] Yoneyama, K. (1917). Theory of continuous set of points. Tôhoku Math. J. 12(1): 43-158. · JFM 46.0303.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.