×

Some variational principles for the metric mean dimension of a semigroup action. (English) Zbl 1533.37034

The authors aim to investigate the concept of metric mean dimension concerning both a compactly generated semigroup action and a compactly generated free semigroup action. Let \(\overline{\text{mdim}}_M\left(X, \mathbb{S},d, \mathbb{P}\right)\) be the upper metric mean dimensions of the free semigroup action \(\mathbb{S}\) on \((X, d)\) with respect to a fixed set of generators \(G_1\) and a random walk \(\mathbb{P}\) in \(Y^{\mathbb{N}}\). The initial finding presented in the paper demonstrates that it is possible to calculate the metric mean dimension of a semigroup action using the entropy function.
Theorem. Let \((X, d)\) be a compact metric space and \(\mathbb{S}\) be the free semigroup action induced on \((X, d)\) by a family of continuous maps \((g_y : X\to X)_{y\in Y}\). Then: \[ \overline{\text{mdim}}_M\left(X, \mathbb{S},d, \mathbb{P}\right) =\lim\sup _{\varepsilon\to 0^+} \frac{\sup\limits_{x\in X}h_d(x,\varepsilon)}{- \log\varepsilon}, \] for every \(\mathbb{P}\in \mathcal{M}\left(Y^{\mathbb{N}}\right)\).
The authors then obtain new results regarding U. Shapira’s entropy [Isr. J. Math. 158, 225–247 (2007; Zbl 1121.37008)] of a semigroup action. In another theorem, the authors extend the upper metric mean dimensions for compactly generated free semigroup actions. As a logical continuation of the metric mean dimension applied to a singular dynamic system, the authors investigate the upper metric mean dimension by employing the notion of entropy discussed in [E. Ghys et al., Acta Math. 160, No. 1–2, 105–142 (1988; Zbl 0666.57021)]. In the subsequent theorem, they present a form of partial variational principle concerning the metric mean dimension of the action, specifically in relation to the volume measure, when \(G\) constitutes a group of homeomorphisms.

MSC:

37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B40 Topological entropy
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37C45 Dimension theory of smooth dynamical systems
37A05 Dynamical aspects of measure-preserving transformations
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
22F05 General theory of group and pseudogroup actions

References:

[1] Biś, A., An analogue of the variational principle for group and pseudogroup actions, Ann Inst Fourier, 63, 3, 839-863 (2013) · Zbl 1294.37011 · doi:10.5802/aif.2778
[2] Bufetov, A., Topological entropy of free semigroup actions and skew-product transformations, J Dynam Contr Syst, 5, 137-143 (1999) · Zbl 0949.37001 · doi:10.1023/A:1021796818247
[3] Carvalho, M.; Rodrigues, F.; Varandas, P., Semigroups actions of expanding maps, J Stat Phys, 116, 1, 114-136 (2017) · Zbl 1379.37073 · doi:10.1007/s10955-016-1697-3
[4] Carvalho, M.; Rodrigues, F.; Varandas, P., Quantitative recurrence for free semigroup actions, Nonlinearity, 31, 3, 864-886 (2018) · Zbl 1388.37019 · doi:10.1088/1361-6544/aa999f
[5] Carvalho, M.; Rodrigues, F.; Varandasm, P., A variational principle for free semigroup actions, Adv Math, 334, 450-487 (2018) · Zbl 1457.37020 · doi:10.1016/j.aim.2018.06.010
[6] Carvalho, M.; Rodrigues, F.; Varandas, P., A variational principle for the metric mean dimension of free semigroup actions, Ergod Th Dynam Sys, 42, 65-85 (2022) · Zbl 1485.37010 · doi:10.1017/etds.2020.143
[7] Carvalho, M.; Rodrigues, F.; Varandas, P., Generic homeomorphisms have full metric mean dimension, Ergod Th Dynam Sys, 42, 42-64 (2022) · Zbl 1486.37016 · doi:10.1017/etds.2020.130
[8] Cheng, D.; Liand, Z.; Selmi, B., Upper metric mean dimensions with potential on subsets, Nonlinearity, 34, 852-867 (2021) · Zbl 1457.49026 · doi:10.1088/1361-6544/abcd08
[9] Eldering J. Manifolds of bounded geometry. Normally hyperbolic invariant manifolds. Atlantis series in dynamical systems, vol 2. Atlantis Press, Paris. · Zbl 1257.53054
[10] Falconer K. 1990. Fractal geometry: mathematical foundations and applications. Wiley. · Zbl 0689.28003
[11] Ghys, E.; Langevin, R.; Walczak, P., Entropie géométrique des feuilletages, Acta Math, 160, 1-2, 105-142 (1988) · Zbl 0666.57021 · doi:10.1007/BF02392274
[12] Lindenstrauss, E.; Weiss, B., Mean topological dimension, Israel J Math, 115, 1-24 (2000) · Zbl 0978.54026 · doi:10.1007/BF02810577
[13] Lindenstrauss, E.; Tsukamoto, M., Double variational principle for mean dimension, Geom Funct Anal, 29, 1048-1109 (2019) · Zbl 1433.37025 · doi:10.1007/s00039-019-00501-8
[14] Mattila P. 1995. Geometry of sets and measures in euclidean spaces. Cambridge studies in advanced mathematics, vol 44. Cambridge University Press, Cambridge, Fractals and rectifibility. · Zbl 0819.28004
[15] Rodrigues F, Jacobus T, Silva M. 2022. Entropy points and applications for free semigroup actions. J Stat Phys, vol 186(6). · Zbl 1485.37013
[16] Shapira, U., Measure theoretical entropy of covers, Israel J Math, 158, 1, 225-247 (2007) · Zbl 1121.37008 · doi:10.1007/s11856-007-0012-z
[17] Shi, R., On variational principle for the metric mean dimension, IEEE Trans Inf Theory, 68, 7, 4282-4288 (2022) · Zbl 1505.94028 · doi:10.1109/TIT.2022.3157786
[18] Gutman, Y.; Sṕiewak, A., Around the variational principle for metric mean dimension, Stud Math, 261, 345-360 (2021) · Zbl 1484.37002 · doi:10.4064/sm201029-23-2
[19] Pesin Y. 1997. Dimension theory in dynamical systems: contemporary views and applications. Lectures in mathematics, Chicago Press.
[20] Tang, J.; Li, B.; Cheng, W-C, Some properties on topological entropy of free semigroup action, Dynamical Syst, 33, 1, 54-71 (2018) · Zbl 1384.37023 · doi:10.1080/14689367.2017.1298724
[21] Velozo A, Velozo R. 2017. Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv:1707.05762 [math.DS](preprint). · Zbl 1414.37021
[22] Yano, K., A remark on the topological entropy of homeomorphisms, Inventiones Math, 59, 3, 215-220 (1980) · Zbl 0434.54010 · doi:10.1007/BF01453235
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.