×

Classification and non-degeneracy of positive radial solutions for a weighted fourth-order equation and its application. (English) Zbl 1533.35098

Summary: This paper is devoted to radial solutions of the following weighted fourth-order equation \[ \mathrm{div} (| x |^\alpha \nabla (\mathrm{div} (| x |^\alpha \nabla u))) = | u |^{2_\alpha^{\ast \ast} - 2} u \quad \text{in } \mathbb{R}^N, \] where \(N \geq 2\), \(\frac{ 4 - N}{ 2} < \alpha < 2\) and \(2_\alpha^{\ast \ast} = \frac{ 2 N}{ N - 4 + 2 \alpha}\). It is obvious that the solutions of above equation are invariant under the scaling \(\lambda^{\frac{ N - 4 + 2 \alpha}{ 2}} u (\lambda x)\) while they are not invariant under translation when \(\alpha \neq 0\). We characterize all the solutions to the related linearized problem about radial solutions, and obtain the conclusion of that if \(\alpha\) satisfies \((2 - \alpha) (2 N - 2 + \alpha) \neq 4 k (N - 2 + k)\) for all \(k \in \mathbb{N}^+\) the radial solution is non-degenerate, otherwise there exist new solutions to the linearized problem that “replace” the ones due to the translations invariance. As applications, firstly we investigate the remainder terms of some inequalities related to above equation. Then when \(N \geq 5\) and \(0 < \alpha < 2\), we establish a new type second-order Caffarelli-Kohn-Nirenberg inequality \[ \int_{\mathbb{R}^N} | \mathrm{div} (| x |^\alpha \nabla u) |^2 \mathrm{d} x \geq C \left(\int_{\mathbb{R}^N} | u |^{2_\alpha^{\ast \ast}} \mathrm{d} x\right)^{\frac{ 2}{ 2_\alpha^{\ast \ast}}}, \quad \text{for all } u \in C_0^\infty (\mathbb{R}^N), \] and in this case we consider a prescribed perturbation problem by using Lyapunov-Schmidt reduction.

MSC:

35J30 Higher-order elliptic equations
35B06 Symmetries, invariants, etc. in context of PDEs

References:

[1] Alarcón, S., Sign-changing solutions at the almost Hénon critical exponent. J. Math. Anal. Appl., 1, 624-642 (2018) · Zbl 1398.35086
[2] Ambrosetti, A.; Garcia Azorero, J.; Peral, I., Perturbation of \(\Delta u + u^{\frac{ N + 2}{ N - 2}} \). J. Funct. Anal., 1, 117-149 (1999) · Zbl 0938.35056
[3] Bartsch, T.; Weth, T.; Willem, M., A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. Partial Differential Equations, 253-268 (2003) · Zbl 1059.31006
[4] Bhakta, M.; Musina, R., Entire solutions for a class of variational problems involving the biharmonic operator and rellich potentials. Nonlinear Anal., 9, 3836-3848 (2012) · Zbl 1242.26020
[5] Bianchi, G.; Egnell, H., A note on the Sobolev inequality. J. Funct. Anal., 1, 18-24 (1991) · Zbl 0755.46014
[6] Bonheure, D.; Casteras, J.; Gladiali, F., Bifurcation analysis of the Hardy-Sobolev equation. J. Differential Equations, 759-798 (2021) · Zbl 1468.35016
[7] Brezis, H.; Lieb, E., Sobolev inequalities with remainder terms. J. Funct. Anal., 73-86 (1985) · Zbl 0577.46031
[8] Caffarelli, L.; Kohn, R.; Nirenberg, L., First order interpolation inequalities with weights. Compos. Math., 259-275 (1984) · Zbl 0563.46024
[9] Deng, S.; Grossi, M.; Tian, X., On some weighted fourth-order equations. J. Differential Equations, 612-634 (2023) · Zbl 1514.35009
[10] Deng, S.; Tian, X., Some weighted fourth-order Hardy-Hénon equations. J. Funct. Anal., 1 (2023), Paper No. 109745 · Zbl 1536.35232
[11] Elias, U., Nonoscillation and eventual disconjugacy. Proc. Amer. Math. Soc., 2, 269-275 (1977) · Zbl 0367.34024
[12] Esposito, P.; Ghoussoub, N.; Pistoia, A.; Vaira, G., Sign-changing solutions for critical equations with Hardy potential. Anal. PDE, 2, 533-566 (2021) · Zbl 1473.35290
[13] Felli, V., Existence of conformal metrics on \(\mathbb{S}^n\) with prescribed fourth-order invariant. Adv. Differential Equations, 1, 47-76 (2002) · Zbl 1054.53061
[14] Felli, V.; Schneider, M., Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. J. Differential Equations, 121-142 (2003) · Zbl 1088.35023
[15] Gladiali, F.; Grossi, M., Linear perturbations for the critical Hénon problem. Differential Integral Equations, 7-8, 733-752 (2015) · Zbl 1363.35141
[16] Gladiali, F.; Grossi, M.; Neves, S., Nonradial solutions for the Hénon equation in \(\mathbb{R}^N\). Adv. Math., 1-36 (2013) · Zbl 1335.35077
[17] Guan, X.; Guo, Z., New types of Caffarelli-Kohn-Nirenberg inequalities and applications. Commun. Pure Appl. Anal., 12, 4071-4087 (2022) · Zbl 1510.46018
[18] Guo, Z.; Wan, F.; Wang, L., Embeddings of weighted Sobolev spaces and a weighted fourth-order elliptic equation. Commun. Contemp. Math., 6 (2020) · Zbl 1453.35077
[19] Huang, X.; Wang, L., Classification to the positive radial solutions with weighted biharmonic equation. Discrete Contin. Dyn. Syst., 8, 4821-4837 (2020) · Zbl 1440.35085
[20] Lin, C.-S., Interpolation inequalities with weights. Comm. Partial Differential Equations, 4, 1515-1538 (1986) · Zbl 0635.46032
[21] Lin, C.-S., A classification of solutions of a conformally invariant fourth order equation in \(\mathbb{R}^N\). Comment. Math. Helv., 2, 206-231 (1998) · Zbl 0933.35057
[22] Lions, P. L., The concentration-compactness principle in the calculus of variations, the limit case, part \(I\). Rev. Mat. Iberam., 1, 145-201 (1985) · Zbl 0704.49005
[23] Lu, G.; Wei, J., On a Sobolev inequality with remainder terms. Proc. Amer. Math. Soc., 1, 75-84 (2000) · Zbl 0961.35100
[24] Morpurgo, C., Sharp inequalities for functional integrals and traces of conformally invariant operators. Duke Math. J., 3, 477-553 (2002) · Zbl 1065.58022
[25] Musina, R.; Sreenadh, K., Rellich inequalities with weights. Calc. Var. Partial Differential Equations, 1-2, 147-164 (2012) · Zbl 1256.26013
[26] Musina, R.; Sreenadh, K., Radially symmetric solutions to the Hénon-Lane-Emden system on the critical hyperbola. Commun. Contemp. Math., 3 (2014), 16pp · Zbl 1305.35054
[27] de Oliveira, J. F.; Silva, J., On a Sobolev-type inequality and its minimizers (2023), Preprint, https://arxiv.org/abs/2307.10483
[28] Swanson, C. A., The best Sobolev constant. Appl. Anal., 4, 227-239 (1992) · Zbl 0739.46026
[29] Van der Vorst, R., Best constant for the embedding of the space \(H^2 \cap H_0^1 ( \Omega )\) into \(L^{2 N / ( N - 4 )} ( \Omega )\). Differential Integral Equations, 2, 259-276 (1993) · Zbl 0801.46033
[30] Yan, Y., Classification of positive radial solutions to a weighted biharmonic equation. Commun. Pure Appl. Anal., 12, 4139-4154 (2021) · Zbl 1481.35158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.