×

Improved results on reachable set estimation for singularly perturbed systems with time-varying delay. (English) Zbl 1532.93019

Summary: The problem of reachable set estimation for singularly perturbed systems with time-varying delays and bounded perturbation is studied in this paper. Firstly, a Lyapunov-Krasovskii function related to the perturbed parameter \(\eta\) is established. Secondly, introducing a method of integral inequality scaling and eliminated the influence of singularly perturbed parameter on the system within a certain range. The system state is therefore contained in a \(\eta\)-independent ellipsoid in accordance with a criterion imposed by linear matrix inequalities. Subsequently, examples are used to show that the findings are valid.

MSC:

93B03 Attainable sets, reachability
93C70 Time-scale analysis and singular perturbations in control/observation systems
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] Ma, X.; Zhang, Y.; Huang, J., Reachable set estimation and synthesis for semi-Markov jump systems. Inform. Sci., 376-386 (2022) · Zbl 1533.93051
[2] Zhang, L.; Zhang, X.; Chang, X.; Zhao, N., Adaptive fault-tolerant control-based real-time reachable set synthesis of heterogeneous nonlinear singular multi-agent systems with uncertain parameters. IEEE Trans. Autom. Sci. Eng. (2023)
[3] Feng, Z.; Lam, J., On reachable set estimation of singular systems. Automatica, 146-153 (2015) · Zbl 1309.93024
[4] Hoefkens, J.; Berz, M.; Makino, K., Computing validated solutions of implicit differential equations. Adv. Comput. Math., 1, 231-253 (2003) · Zbl 1028.34004
[5] Margellos, K.; Lygeros, J., Toward 4-D trajectory management in air traffic control: a study based on monte carlo simulation and reachability analysis. IEEE Trans. Control Syst. Technol., 5, 1820-1833 (2012)
[6] Abedor, J.; Nagpal, K.; Poolla, K., A linear matrix inequality approach to peak-to-peak gain minimization. Internat. J. Robust Nonlinear Control, 9-10, 899-927 (1996) · Zbl 0862.93028
[7] Zhong, Z.; Zhu, Y.; Ahn, C. K., Reachable set estimation for Takagi-Sugeno fuzzy systems against unknown output delays with application to tracking control of AUVs. ISA Trans., 31-38 (2018)
[8] Hu, T.; Teel, A. R.; Zaccarian, L., Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Trans. Automat. Control, 11, 1770-1786 (2006) · Zbl 1366.93439
[9] Zeng, H.; Zhai, Z.; He, Y.; Teo, K.; Wang, W., New insights on stability of sampled-data systems with time-delay. Appl. Math. Comput. (2020) · Zbl 1433.93110
[10] Huu Sau, N.; Thuan, M. V., State bounding for positive singular discrete-time systems with time-varying delay and bounded disturbances. IET Control Theory Appl., 16, 2571-2582 (2019)
[11] Li, J.; Feng, Z.; Zhang, C., Reachable set estimation for discrete-time singular systems. Asian J. Control, 5, 1862-1870 (2017) · Zbl 1386.93044
[12] Zhang, L.; Zong, G.; Zhao, X.; Zhao, N.; Sharaf, S., Reachable set control for discrete-time Takagi-Sugeno fuzzy singular Markov jump system. IEEE Trans. Fuzzy Syst., 9, 3173-3184 (2023)
[13] Feng, Z.; Yang, Y.; Lam, H., Extended-dissipativity-based adaptive event-triggered control for stochastic polynomial fuzzy singular systems. IEEE Trans. Fuzzy Syst., 8, 3224-3236 (2022)
[14] Zhao, J., A new result on reachable set estimation for time-varying delay singular systems. Internat. J. Robust Nonlinear Control, 3, 806-816 (2021) · Zbl 1525.93018
[15] Li, Y.; He, Y.; Lin, W.; Wu, M., Reachable set estimation for singular systems via state decomposition method. J. Franklin Inst. B, 11, 7327-7342 (2020) · Zbl 1447.93019
[16] Lin, W.; He, Y.; Wu, M.; Liu, Q., Reachable set estimation for Markovian jump neural networks with time-varying delay. Neural Netw., 527-532 (2018) · Zbl 1441.93019
[17] Shen, Z.; Zhang, L.; Niu, B.; Zhao, N., Event-based reachable set synthesis for delayed nonlinear semi-Markov systems. Chaos, Solitons & Fractals, 114284 (2023)
[18] Nemati, A.; Peimani, M.; Mobayen, S.; Sayyedfattahi, S., Adaptive non-singular finite time control of nonlinear disturbed cyber-physical systems with actuator cyber-attacks and time-varying delays. Inform. Sci., 1111-1126 (2022) · Zbl 1536.93448
[19] Zhao, N.; Zhao, X.; Chen, M.; Zong, G.; Zhang, H., Resilient distributed event-triggered platooning control of connected vehicles under denial-of-service attacks. IEEE Trans. Intell. Transp. Syst., 6, 6191-6202 (2023)
[20] Niu, B.; Zhang, Y.; Zhao, X.; Wang, H.; Sun, W., Adaptive predefined-time bipartite consensus tracking control of constrained nonlinear MASs: An improved nonlinear mapping function method. IEEE Trans. Cybern. (2023)
[21] Feng, Z.; Zhang, H.; Lam, H., New results on dissipative control for a class of singular Takagi-Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst., 7, 2466-2475 (2022)
[22] Zhang, H.; Zhao, X.; Wang, H.; Zong, G.; Xu, N., Hierarchical sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with unknown perturbation. IEEE Trans. Neural Netw. Learn. Syst., 1-13 (2022)
[23] Zhang, H.; Zhao, X.; Zhang, L.; Niu, B.; Zong, G.; Xu, N., Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization. Internat. J. Robust Nonlinear Control, 14, 8163-8185 (2022) · Zbl 1528.93076
[24] Guo, S.; Zhao, X.; Wang, H.; Xu, N., Distributed consensus of heterogeneous switched nonlinear multiagent systems with input quantization and DoS attacks. Appl. Math. Comput. (2023) · Zbl 07704209
[25] Yue, S.; Niu, B.; Wang, H.; Zhang, L.; Ahmad, A. M., Hierarchical sliding mode-based adaptive fuzzy control for uncertain switched under-actuated nonlinear systems with input saturation and dead-zone. Robotic Intell. Autom. (2023)
[26] Dong, J.; Yang, G., \( H_\infty\) Control for fast sampling discrete-time singularly perturbed systems. Automatica, 5, 1385-1393 (2008) · Zbl 1283.93181
[27] Zhou, L.; Che, Z.; Yang, C., Disturbance observer-based integral sliding mode control for singularly perturbed systems with mismatched disturbances. IEEE Access, 9854-9861 (2018)
[28] Shen, H.; Men, Y.; Wu, Z.; Cao, J.; Lu, G., Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application. IEEE Trans. Circuits Syst. I. Regul. Pap., 3, 1130-1140 (2018)
[29] Wang, Y.; Xie, X.; Chadli, M.; Xie, S.; Peng, Y., Sliding-mode control of fuzzy singularly perturbed descriptor systems. IEEE Trans. Fuzzy Syst., 8, 2349-2360 (2020)
[30] Zhang, L.; Wang, J.; Zhao, X.; Zhao, N.; Sharaf, S., Event-based reachable set synthesis for continuous delayed fuzzy singularly perturbed systems. IEEE Trans. Circuits Syst. II: Express Briefs (2023)
[31] Liu, H.; Sun, F.; Sun, Z., \( H_\infty\) Control for Markovian jump linear singularly perturbed systems. IEEE Proc. D, 5, 637-644 (2004)
[32] Zhang, L.; Zhao, X.; Zhao, N., Real-time reachable set control for neutral singular Markov jump systems with mixed delays. IEEE Trans. Circuits Syst. II, 3, 1367-1371 (2022)
[33] Zeng, H.; He, Y.; Wu, M.; She, J., New results on stability analysis for systems with discrete distributed delay. Automatica, 189-192 (2015) · Zbl 1331.93166
[34] Zeng, H.; Liu, X.; Wang, W., A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Appl. Math. Comput., 1-8 (2019) · Zbl 1428.34112
[35] Liu, G.; Chen, X.; Shen, Z.; Liu, Y.; Jia, X., Reachable set estimation for continuous delayed singularly perturbed systems with bounded disturbances. Appl. Math. Comput. (2022) · Zbl 1510.93046
[36] Zhang, C.; Long, F.; He, Y.; Yao, W.; Jiang, L.; Wu, M., A relaxed quadratic function negative-determination lemma and its application to time-delay systems. Automatica (2020) · Zbl 1440.93144
[37] Zeng, H.; Lin, H.; He, Y.; Teo, K.; Wang, W., Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality. J. Franklin Inst. B, 14, 9930-9941 (2020) · Zbl 1448.93257
[38] Wang, W.; Zeng, H.; Teo, K.; Chen, Y., Relaxed stability criteria of time-varying delay systems via delay-derivative-dependent slack matrices. J. Franklin Inst. B, 9, 6099-6109 (2023) · Zbl 1516.93200
[39] He, Y.; Zhang, C.; Zeng, H.; Wu, M., Additional functions of variable-augmented-based free-weighting matrices and application to systems with time-varying delay. Internat. J. Systems Sci., 5, 991-1003 (2023) · Zbl 1520.93373
[40] Zeng, H.; He, Y.; Teo, K. L., Monotone-delay-interval-based Lyapunov functionals for stability analysis of systems with a periodically varying delay. Automatica (2022) · Zbl 1489.93093
[41] Zhang, L.; Feng, Z.; Jiang, Z.; Zhao, N.; Yang, Y., Improved results on reachable set estimation of singular systems. Appl. Math. Comput. (2020) · Zbl 1508.93029
[42] Feng, Z.; Li, R.; Zheng, W. X., Event-based adaptive neural network asymptotic tracking control for a class of nonlinear systems. Inform. Sci., 481-495 (2022) · Zbl 1536.93539
[43] Feng, Z.; Li, R.; Chadli, M.; Zhang, X., Removing the feasibility conditions on adaptive fuzzy decentralized tracking control of large-scale nonlinear systems with full-state constraints. J. Franklin Inst. B, 5125-5147 (2022) · Zbl 1492.93092
[44] Zhang, H.; Zhao, N.; Wang, S.; Agarwal, R. K., Improved event-triggered dynamic output feedback control for networked T-S fuzzy systems with actuator failure and deception attacks. IEEE Trans. Cybern. (2023)
[45] Peng, T.; Zeng, H.; Wang, W.; Zhang, X.; Liu, X., General and less conservative criteria on stability and stabilization of T-S fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst., 5, 1531-1541 (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.