×

Optimal control applied to Zika virus epidemics in Colombia and Puerto Rico. (English) Zbl 1532.92113

Summary: Zika virus (ZIKV) is a mostly non-lethal disease in humans transmitted by mosquitoes or humans that can produce severe brain defects such as microcephaly in babies and Guillain-Barré syndrome in elderly adults. The use of optimal control strategies involving information campaigns about insect repellents and condoms alongside an available safe and effective vaccine can prevent the number of infected humans with ZIKV. A system of nonlinear ordinary differential equations is formulated for the transmission dynamics of ZIKV in the presence of three control strategies to evaluate the impact of various scenarios during a ZIKV epidemic. In addition, we estimate parameters using weekly incidence data from previous ZIKV outbreaks in Colombia and Puerto Rico to capture the dynamics of an epidemic in each country when control measures are available. The basic reproduction number, \(\mathcal{R}_0\), of each country is calculated using estimated parameters (without the controls). The vector-borne transmission threshold \((\mathcal{R}_v)\) is dominant in both countries, but the sexual transmission threshold \((\mathcal{R}_d)\) in Colombia is considerably higher than in Puerto Rico. Numerical simulations for Colombia show that the most effective strategies are to use three controls since the start of the outbreak. However, for Puerto Rico only information campaigns about mosquito repellents and vaccination are the most effective ways to mitigate the epidemic.

MSC:

92D30 Epidemiology
34A34 Nonlinear ordinary differential equations and systems
49J15 Existence theories for optimal control problems involving ordinary differential equations
Full Text: DOI

References:

[1] Agusto, F.; Bewick, S.; Fagan, W., Mathematical model for Zika virus dynamics with sexual transmission route. Ecol. Complex., 61-81 (2017)
[2] Agusto, F. B.; Bewick, S.; Fagan, W., Mathematical model of Zika virus with vertical transmission. Infect. Dis. Model., 2, 244-267 (2017)
[3] Allard, A.; Althouse, B. M.; Hébert-Dufresne, L.; Scarpino, S. V., The risk of sustained sexual transmission of Zika is underestimated. PLoS Pathogens, 9 (2017)
[4] Atkinson, B.; Hearn, P.; Afrough, B.; Lumley, S.; Carter, D.; Aarons, E. J.; Simpson, A. J.; Brooks, T. J.; Hewson, R., Detection of Zika virus in semen. Emerg. Infect. Diseases, 5, 940 (2016)
[5] Bastos, M. M.; Coelho, F. C., Estimating under-observation and the full size of the 2016 Zika epidemic in Rio de Janeiro. PLoS One, 10 (2018)
[6] Biswas, S. K.; Ghosh, U.; Sarkar, S., Mathematical model of Zika virus dynamics with vector control and sensitivity analysis. Infect. Dis. Model., 23-41 (2020)
[7] Bonyah, E.; Okosun, K. O., Mathematical modeling of Zika virus. Asian Pacific J. Trop. Dis., 9, 673-679 (2016)
[8] Cardenas, V. M.; Paternina-Caicedo, A. J.; Salvatierra, E. B., Underreporting of fatal congenital Zika syndrome, Mexico, 2016-2017. Emerg. Infect. Diseases, 8, 1560 (2019)
[9] Carrasquilla, M. C.; Ortiz, M. I.; León, C.; Rondón, S.; Kulkarni, M. A.; Talbot, B.; Sander, B.; Vásquez, H.; Cordovez, J. M.; González, C., Entomological characterization of Aedes mosquitoes and arbovirus detection in Ibagué, a Colombian city with co-circulation of Zika, dengue and Chikungunya viruses. Parasites Vectors, 1, 1-14 (2021)
[10] Centers for Disease Control and Prevention, Zika Virus, ., 2021. https://www.cdc.gov/zika/about/overview.html
[11] Cetron, M., Revision to CDC’s Zika travel notices: minimal likelihood for mosquito-borne Zika virus transmission at elevations above 2,000 meters. MMWR. Morb. Mortal. Wkly. Rep. (2016)
[12] de Oliveira, W. K.; de França, G. V.A.; Carmo, E. H.; Duncan, B. B.; de Souza Kuchenbecker, R.; Schmidt, M. I., Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: A surveillance-based analysis. Lancet, 10097, 861-870 (2017)
[13] Dick, G.; Kitchen, S.; Haddow, A., Zika virus (I). Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hygiene, 5, 509-520 (1952)
[14] D’Ortenzio, E.; Matheron, S.; de Lamballerie, X.; Hubert, B.; Piorkowski, G.; Maquart, M.; Descamps, D.; Damond, F.; Yazdanpanah, Y.; Leparc-Goffart, I., Evidence of sexual transmission of Zika virus. N. Engl. J. Med., 22, 2195-2198 (2016)
[15] Dudley, D. M.; Aliota, M. T.; Mohr, E. L.; Weiler, A. M.; Lehrer-Brey, G.; Weisgrau, K. L.; Mohns, M. S.; Breitbach, M. E.; Rasheed, M. N.; Newman, C. M., A rhesus macaque model of Asian-lineage Zika virus infection. Nat. Commun., 1, 12204 (2016)
[16] Friedman, A., Foundations of Modern Analysis (1982), Courier Corporation · Zbl 0557.46001
[17] Gao, D.; Lou, Y.; He, D.; Porco, T. C.; Kuang, Y.; Chowell, G.; Ruan, S., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis. Sci. Rep. (2016)
[18] González-Parra, G.; Benincasa, T., Mathematical modeling and numerical simulations of Zika in Colombia considering mutation. Math. Comput. Simulation, 1-18 (2019) · Zbl 1540.92171
[19] González-Parra, G.; Díaz-Rodríguez, M.; Arenas, A. J., Optimization of the controls against the spread of Zika virus in populations. Computation, 3, 76 (2020)
[20] Goswami, N. K.; Srivastav, A. K.; Ghosh, M.; Shanmukha, B., Mathematical modeling of Zika virus disease with nonlinear incidence and optimal control. J. Phys.: Conf. Ser., 1 (2018)
[21] Hernández-Ávila, J. E.; Palacio-Mejía, L. S.; López-Gatell, H.; Alpuche-Aranda, C. M.; Molina-Vélez, D.; González-González, L.; Hernández-Ávila, M., Zika virus infection estimates, Mexico. Bull. World Health Organ., 5, 306 (2018)
[22] Kucharski, A. J.; Funk, S.; Eggo, R. M.; Mallet, H.-P.; Edmunds, W. J.; Nilles, E. J., Transmission dynamics of Zika virus in island populations: A modelling analysis of the 2013-14 French Polynesia outbreak. PLoS Negl. Trop. Dis., 5 (2016)
[23] Lenhart, S.; Workman, J. T., Optimal Control Applied to Biological Models (2007), CRC Press · Zbl 1291.92010
[24] Lukes, D. L., Differential Equations: Classical to Controlled, Vol. 162 (1982), Academic Press · Zbl 0509.34003
[25] Mansuy, J. M.; Dutertre, M.; Mengelle, C.; Fourcade, C.; Marchou, B.; Delobel, P.; Izopet, J.; Martin-Blondel, G., Zika virus: High infectious viral load in semen, a new sexually transmitted pathogen?. Lancet Infect. Dis., 4, 405 (2016)
[26] Miyaoka, T. Y.; Lenhart, S.; Meyer, J. F., Optimal control of vaccination in a vector-borne reaction-diffusion model applied to Zika virus. J. Math. Biol., 3, 1077-1104 (2019) · Zbl 1416.35136
[27] Momoh, A. A.; Fügenschuh, A., Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model. Oper. Res. Health Care, 99-111 (2018)
[28] Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V.-M., Potential sexual transmission of Zika virus. Emerg. Infect. Diseases, 2, 359-361 (2015)
[29] Okyere, E.; Olaniyi, S.; Bonyah, E., Analysis of Zika virus dynamics with sexual transmission route using multiple optimal controls. Sci. Afr. (2020)
[30] Ospina, M. L.; Tong, V. T.; Gonzalez, M.; Valencia, D.; Mercado, M.; Gilboa, S. M.; Rodriguez, A. J.; Tinker, S. C.; Rico, A.; Winfield, C. M., Zika virus disease and pregnancy outcomes in Colombia. N. Engl. J. Med., 6, 537-545 (2020)
[31] Pabón-Rodríguez, F. M., An Estimate of the Basic Reproductive Number, R0, for the 2015-2016 Zika Virus Outbreak in Puerto Rico (2018), (Ph.D. thesis)
[32] Pattnaik, A.; Sahoo, B. R.; Pattnaik, A. K., Current status of Zika virus vaccines: Successes and challenges. Vaccines, 2, 266 (2020)
[33] Paz-Bailey, G.; Rosenberg, E. S.; Doyle, K.; Munoz-Jordan, J.; Santiago, G. A.; Klein, L.; Perez-Padilla, J.; Medina, F. A.; Waterman, S. H.; Adams, L. E., Persistence of Zika virus in body fluids. N. Engl. J. Med., 13, 1234-1243 (2018)
[34] Peiter, P. C.; Pereira, R.d. S.; Nunes Moreira, M. C.; Nascimento, M.; Tavares, M.d. F.L.; Franco, V.d. C.; Carvajal Cortês, J. J.; Campos, D.d. S.; Barcellos, C., Zika epidemic and microcephaly in Brazil: Challenges for access to health care and promotion in three epidemic areas. PLoS One, 7 (2020)
[35] Pontryagin, L.; Boltyanskii, V.; Gamkrelidze, R.; Mishchenko, E., Mathematical Theory of Optimal Processes (1962), Wiley: Wiley New York · Zbl 0102.32001
[36] Sasmal, S. K.; Ghosh, I.; Huppert, A.; Chattopadhyay, J., Modeling the spread of Zika virus in a stage-structured population: effect of sexual transmission. Bull. Math. Biol., 11, 3038-3067 (2018) · Zbl 1401.92204
[37] Smith, H. L., Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, no. 41 (2008), American Mathematical Soc.
[38] Thomas, S. J.; Barrett, A., Zika vaccine pre-clinical and clinical data review with perspectives on the future development. Hum. Vaccines Immunotherapeutics, 1-13 (2020)
[39] Towers, S.; Brauer, F.; Castillo-Chavez, C.; Falconar, A. K.; Mubayi, A.; Romero-Vivas, C. M., Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics, 50-55 (2016)
[40] Tuncer, N.; Marctheva, M.; LaBarre, B.; Payoute, S., Structural and practical identifiability analysis of Zika epidemiological models. Bull. Math. Biol., 8, 2209-2241 (2018) · Zbl 1398.92256
[41] Tuncer, N.; Martcheva, M., Determining reliable parameter estimates for within-host and within-vector models of Zika virus. J. Biol. Dyn., 1, 430-454 (2021) · Zbl 1484.92135
[42] Valega-Mackenzie, W.; Ríos-Soto, K. R., Can vaccination save a Zika virus epidemic?. Bull. Math. Biol., 3, 598-625 (2018) · Zbl 1391.92056
[43] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 1, 29-48 (2002) · Zbl 1015.92036
[44] Wilder-Smith, A.; Vannice, K.; Durbin, A.; Hombach, J.; Thomas, S. J.; Thevarjan, I.; Simmons, C. P., Zika vaccines and therapeutics: Landscape analysis and challenges ahead. BMC Med., 1, 1-15 (2018)
[45] World Bank-Population Growth, ., https://data.worldbank.org/indicator/SP.POP.GROW
[46] Yakob, L.; Clements, A. C., A mathematical model of chikungunya dynamics and control: The major epidemic on Réunion Island. PLoS One, 3 (2013)
[47] Yogurtcu, O. N.; Yang, H.; Chancey, C.; Forshee, R. A.; Eder, A. F., Predictive model for Zika virus RNA minipool nucleic acid testing in outbreak scenarios. Transfusion, 7, 2211-2217 (2019)
[48] Young, G.; Bohning, K. J.; Zahralban-Steele, M.; Hather, G.; Tadepalli, S.; Mickey, K.; Godin, C. S.; Sanisetty, S.; Sonnberg, S.; Patel, H. K., Complete protection in macaques conferred by purified inactivated Zika vaccine: Defining a correlate of protection. Sci. Rep., 1, 1-9 (2020)
[49] Zhu, G.; Shi, Y.; Li, Y.; Xiao, G.; Xiao, J.; Liu, Q., Model-based projection of Zika infection risk with temperature effect: A case study in southeast Asia. Bull. Math. Biol., 9, 92 (2022) · Zbl 1497.92336
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.