×

A novel statistical linearization solution for randomly excited coupled bending-torsional beams resting on non-linear supports. (English) Zbl 1532.74071

Summary: A novel statistical linearization technique is developed for computing stationary response statistics of randomly excited coupled bending-torsional beams resting on non-linear elastic supports. The key point of the proposed technique consists in representing the non-linear coupled response in terms of constrained linear modes. The resulting set of non-linear equations governing the modal amplitudes is then replaced by an equivalent linear one via a classical statistical error minimization procedure, which provides algebraic non-linear equations for the second-order statistics of the beam response, readily solved by a simple iterative scheme. Data from Monte Carlo simulations, generated by a pertinent boundary integral method in conjunction with a Newmark numerical integration scheme, are used as benchmark solutions to check accuracy and reliability of the proposed statistical linearization technique.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Timoshenko, S.; Young, DH; Weaver, WJR, Vibrations problems in engineering (1974), New York: Wiley, New York
[2] Friberg, PO, Coupled vibrations of beams-an exact dynamic element stiffness matrix, Int J Num Method Eng, 19, 479-493 (1983) · Zbl 0508.73043 · doi:10.1002/nme.1620190403
[3] Dokumaci, E., An exact solution for coupled bending and torsion vibrations of uniform beam having single cross-sectional symmetry, J Sound Vib, 119, 3, 443-449 (1987) · doi:10.1016/0022-460X(87)90408-1
[4] Hallauer, WL; Liu, RYL, Beam bending-torsion dynamic stiffness method for calculation of exact vibrations modes, J Sound Vib, 85, 1, 105-113 (1982) · Zbl 0493.73047 · doi:10.1016/0022-460X(82)90473-4
[5] Banerjee, JR, Coupled bending-torsional dynamic stiffness matrix for beam elements, Int J Num Methods Eng, 28, 1283-1298 (1989) · Zbl 0711.73248 · doi:10.1002/nme.1620280605
[6] Banerjee, JR, Explicit frequency equation and mode shapes of a cantilever beam coupled in bending and torsion, J Sound Vib, 224, 2, 267-281 (1999) · doi:10.1006/jsvi.1999.2194
[7] Hashemi, SM; Richard, MJ, A Dynamic Finite Element (DFE) method for free vibrations of bending-torsion coupled beams, Aerosp Sci Technol, 4, 41-55 (2000) · Zbl 0953.74602 · doi:10.1016/S1270-9638(00)00114-0
[8] Eslimy-Isfahany, SHR; Banerjee, JR, Use of generalized mass in the interpretation of dynamic response of bending-torsion coupled beams, J Sound Vib, 238, 2, 295-308 (2000) · doi:10.1006/jsvi.2000.3160
[9] Eslimy-Isfahany, SHR; Banerjee, JR; Sobey, AJ, Response of a bending-torsion coupled beam to deterministic and random loads, J Sound Vib, 195, 2, 267-283 (1996) · doi:10.1006/jsvi.1996.0421
[10] Bishop, RED; Cannon, SM; Miao, S., On coupled bending and torsional vibration of uniform beams, J Sound Vib, 131, 457-464 (1989) · Zbl 1235.74158 · doi:10.1016/0022-460X(89)91005-5
[11] Bercin, AN; Tanaka, M., Coupled flexural-torsional vibrations of Timoshenko beams, J Sound Vib, 207, 1, 47-59 (1997) · doi:10.1006/jsvi.1997.1110
[12] Tanaka, M.; Bercin, AN, Finite element modeling of the coupled bending and torsional free vibration of uniform beams with an arbitrary cross-section, Appl Math Model, 21, 6, 339-344 (1997) · Zbl 0882.73071 · doi:10.1016/S0307-904X(97)00030-9
[13] Banerjee, JR; Guo, S.; Howson, WP, Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping, Comput Struct, 59, 613-621 (1996) · Zbl 0918.73171 · doi:10.1016/0045-7949(95)00307-X
[14] Banerjee, JR; Williams, FW, Coupled bending torsional dynamic stiffness matrix of an axially loaded Timoshenko beam element, Int J Solids Struct, 6, 749-762 (1994) · Zbl 0810.73022 · doi:10.1016/0020-7683(94)90075-2
[15] Hashemi, MS; Richard, MJ, Free vibration analysis of axially loaded bending-torsion coupled beams: a dynamic finite element, Comput Struct, 77, 711-724 (2000) · doi:10.1016/S0045-7949(00)00012-2
[16] Jun, L.; Wanyou, L.; Rongying, S.; Hongxing, H., Coupled bending and torsional vibration of nonsymmetrical axially loaded thin-walled Bernoulli-Euler beams, Mech Res Commun, 31, 697-711 (2004) · Zbl 1098.74595 · doi:10.1016/j.mechrescom.2004.04.005
[17] Jun, L.; Wanyou, L.; Rongying, S.; Hongxing, H., Coupled bending and torsional vibration of axially loaded Bernoulli-Euler beams including warping effects, Appl Acoust, 65, 153-170 (2004) · Zbl 1098.74595 · doi:10.1016/j.apacoust.2003.07.006
[18] Jun, L.; Rongying, S.; Hongxing, H.; Xianding, J., Coupled bending and torsional vibration of axially loaded thin-walled Timoshenko beams, Int J Mech Sci, 46, 229-320 (2004) · Zbl 1112.74394
[19] Adam, C., Forced vibrations of elastic bending-torsion coupled beams, J Sound Vib, 221, 2, 273-287 (1999) · doi:10.1006/jsvi.1998.2005
[20] Han, H.; Cao, D.; Liu, L., Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam, Appl Math Model, 45, 621-635 (2017) · Zbl 1446.74017 · doi:10.1016/j.apm.2017.01.014
[21] Sapountzakis, EJ; Tsiatas, GC, Flexural-torsional vibrations of beams by BEM, Comput Mech, 39, 409-417 (2007) · Zbl 1188.74079 · doi:10.1007/s00466-006-0039-8
[22] Oguamanam, DCD, Free vibration of beams with finite mass rigid tip load and flexural-torsional coupling, Int J Mech Sci, 45, 963-979 (2003) · Zbl 1072.74032 · doi:10.1016/j.ijmecsci.2003.09.014
[23] Gokdag, H.; Kopmaz, O., Coupled bending and torsional vibration of a beam with in span and tip attachments, J Sound Vib, 287, 591-610 (2005) · doi:10.1016/j.jsv.2004.11.019
[24] Burlon, A.; Failla, G.; Arena, F., Coupled bending and torsional free vibrations of beams with in-span supports and attached masses, Eur J Mech-A/Solids, 66, 387-411 (2017) · Zbl 1406.74286 · doi:10.1016/j.euromechsol.2017.07.015
[25] Burlon, A.; Failla, G.; Arena, F., Exact frequency response of two-node coupled bending-torsional beam element with attachments, App Math Model, 63, 508-537 (2018) · Zbl 1392.74048 · doi:10.1016/j.apm.2018.06.047
[26] Burlon, A.; Failla, G.; Arena, F., Exact stochastic analysis of coupled bending-torsion beams with in-span supports and masses, Probab Eng Mech, 54, 53-64 (2018) · Zbl 1406.74286 · doi:10.1016/j.probengmech.2017.07.002
[27] Burlon, A.; Failla, G.; Arena, F., Coupled bending-torsional frequency response of beams with attachments: exact solutions including warping effects, Acta Mechanica, 229, 6, 2445-2475 (2018) · Zbl 1392.74048 · doi:10.1007/s00707-017-2078-y
[28] Gurgoze, M., On the eigenfrequencies of a cantilevered beam, with a tip mass and in-span support, Comput Struct, 1, 85-92 (1995) · Zbl 0900.73350 · doi:10.1016/0045-7949(94)00541-A
[29] Wang, J.; Qiao, P., Vibration of beams with arbitrary discontinuities and boundary condition, J Sound Vib, 308, 12-27 (2007) · doi:10.1016/j.jsv.2007.06.071
[30] Caddemi, S.; Caliò, I.; Cannizzaro, F., Influence of an elastic end support on the dynamic stability of Beck’s column with multiple weak sections, Int J Nonlinear Mech, 69, 14-28 (2015) · doi:10.1016/j.ijnonlinmec.2014.10.016
[31] Colajanni, P.; Falsone, G.; Recupero, A., Simplified formulation of solution for beams on Winkler foundation allowing discontinuities due to loads and constraints, Int J Eng Educ, 25, 1, 75-83 (2009)
[32] Pakdemirli, M.; Boyaci, H., Non-linear vibrations of a simple-simple beam with a non-ideal support in between, J Sound Vib, 268, 331-341 (2003) · Zbl 1236.74161 · doi:10.1016/S0022-460X(03)00363-8
[33] Ghayesh, MH; Kazemirad, S.; Reid, T., Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: a general solution procedure, Appl Math Model, 36, 3299-3311 (2012) · Zbl 1252.74063 · doi:10.1016/j.apm.2011.09.084
[34] Failla, G., Stationary response of beams and frames with fractional dampers through exact frequency response functions, J Eng Mech, 143, 5 (2016)
[35] Papoulis, A.; Pillai, SU, Probability, random variables, and stochastic processes (1991), New York: McGraw Hill, New York
[36] Elishakoff, I.; Crandall, SH, Sixty years of stochastic linearization technique, Meccanica, 52, 1-2, 299-305 (2017) · Zbl 1371.65007 · doi:10.1007/s11012-016-0399-x
[37] Roberts, JB; Spanos, PD, Random vibration and statistical linearization (1991), New York: Wiley, New York · Zbl 0715.73100
[38] Socha, L., Linearization methods for stochastic dynamic system (2008), Berlin: Springer, Berlin · Zbl 1145.60034 · doi:10.1007/978-3-540-72997-6
[39] Spanos, PD; Kougioumtzoglou, IA, Harmonic wavelets based statistical linearization for response evolutionary power spectrum determination, Prob Eng Mech, 27, 57-68 (2012) · doi:10.1016/j.probengmech.2011.05.008
[40] Kougioumtzoglou, IA, Stochastic joint time-frequency response analysis of nonlinear structural systems, J Sound Vib, 332, 7153-7173 (2013) · doi:10.1016/j.jsv.2013.08.024
[41] Kougioumtzoglou, IA; Spanos, PD, Harmonic wavelets based response evolutionary power spectrum determination of linear and nonlinear oscillators with fractional derivative elements, Int J Non-Linear Mech, 80, 66-75 (2016) · doi:10.1016/j.ijnonlinmec.2015.11.010
[42] Fragkoulis, V.; Kougioumtzoglou, IA; Pantelous, A., Statistical linearization of nonlinear structural systems with singular matrices, J Eng Mech, 142, 9, 1-11 (2016) · doi:10.1061/(ASCE)EM.1943-7889.0001119
[43] Kougioumtzoglou, IA; Fragkoulis, V.; Pantelous, A.; Pirrotta, A., Random vibration of linear and nonlinear structural systems with singular matrices: a frequency domain approach, J Sound Vib, 404, 84-101 (2017) · doi:10.1016/j.jsv.2017.05.038
[44] Petromichelakis, I.; Psaros, AF; Kougioumtzoglou, IA, Stochastic response determination and optimization of a class of nonlinear electromechanical energy harvesters: a Wiener path integral approach, Prob Eng Mech, 53, 116-125 (2018) · doi:10.1016/j.probengmech.2018.06.004
[45] Herbert, RE, On the stresses in a nonlinear beam subject to random excitation, Int J Solids Struct, 1, 2, 235-242 (1965) · doi:10.1016/0020-7683(65)90029-6
[46] Seide, P., Nonlinear stresses and deflections of beams subjected to random time dependent uniform pressure, J Eng Ind, 98, 1014-1020 (1975) · Zbl 0352.73048 · doi:10.1115/1.3438993
[47] Spanos, PD; Malara, G., Nonlinear random vibrations of beams with fractional derivative elements, J Eng Mech, 140, 9 (2014) · doi:10.1061/(ASCE)EM.1943-7889.0000778
[48] Fang, J.; Elishakoff, I., Nonlinear response of a beam under stationary random excitation by improved stochastic linearization method, Appl Math Model, 19, 2, 106-111 (1991) · Zbl 0826.73042 · doi:10.1016/0307-904X(94)00008-T
[49] Honerkamp, J., Statistical physics: an advanced approach with applications web-enhanced with problems and solutions (2013), Berlin: Springer, Berlin · Zbl 0999.82002
[50] Katsikadelis, JT; Tsiatas, GC, Large deflection analysis of beams with variable stiffness, Acta Mech, 164, 1-13 (2003) · Zbl 1064.74116 · doi:10.1007/s00707-003-0015-8
[51] Shinozuka, M.; Deodatis, G., Simulation of stochastic processes by spectral representation, Appl Mech, 44, 191-204 (1991) · doi:10.1115/1.3119501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.