×

Heat kernel fluctuations for stochastic processes on fractals and random media. (English) Zbl 1532.60224

Ruiz, Patricia Alonso (ed.) et al., From classical analysis to analysis on fractals. A tribute to Robert Strichartz. Volume 1. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 265-281 (2023).
Summary: It is well known that stochastic processes on fractal spaces or in certain random media exhibit anomalous heat kernel behaviour. One manifestation of such irregular behaviour is the presence of fluctuations in the short- or long-time asymptotics of the on-diagonal heat kernel. In this note, we review some examples for which such fluctuations are known to occur, including Brownian motion on certain deterministic or random fractals, and simple random walks on various examples of random graph trees, such as the incipient infinite cluster of critical percolation on a regular tree and low-dimensional uniform spanning trees. We also announce some new results that add the one-dimensional Bouchaud trap model to this class of examples.
For the entire collection see [Zbl 1534.42001].

MSC:

60K37 Processes in random environments
28A80 Fractals
60J25 Continuous-time Markov processes on general state spaces
60J60 Diffusion processes
60J65 Brownian motion
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics

References:

[1] S. Andres, D. A. Croydon, and T. Kumagai. Heat kernel fluctuations and quantitative homogenization for the one-dimensional Bouchaud trap model. In preparation, 2022.
[2] O. Angel, D. A. Croydon, S. Hernandez-Torres, and D. Shiraishi. Scaling limits of the three-dimensional uniform spanning tree and associated random walk. Ann. Probab., 49(6):3032-3105, 2021. · Zbl 1486.60019
[3] M. T. Barlow. Diffusions on fractals. In Lectures on probability theory and statistics (Saint-Flour, 1995), volume 1690 of Lecture Notes in Math., pages 1-121. Springer, Berlin, 1998. · Zbl 0916.60069
[4] M. T. Barlow, D. A. Croydon, and T. Kumagai. Subsequential scaling limits of simple random walk on the two-dimensional uniform spanning tree. Ann. Probab., 45(1):4-55, 2017. · Zbl 1377.60022
[5] M. T. Barlow, D. A. Croydon, and T. Kumagai. Quenched and averaged tails of the heat kernel of the two-dimensional uniform spanning tree. Probab. Theory Related Fields, 181(1-3):57-111, 2021. · Zbl 1495.60095
[6] M. T. Barlow and B. M. Hambly. Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets. Ann. Inst. H. Poincaré Probab. Statist., 33(5):531-557, 1997. · Zbl 0903.60072
[7] M. T. Barlow and J. Kigami. Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets. J. London Math. Soc. (2), 56(2):320-332, 1997. · Zbl 0904.35064
[8] M. T. Barlow and T. Kumagai. Random walk on the incipient infinite cluster on trees. Illinois J. Math., 50(1-4):33-65, 2006. · Zbl 1110.60090
[9] M. T. Barlow and R. Masson. Spectral dimension and random walks on the two dimensional uniform spanning tree. Comm. Math. Phys., 305(1):23-57, 2011. · Zbl 1223.05285
[10] G. Ben Arous, M. Cabezas, J. Černý, and R. Royfman. Randomly trapped random walks. Ann. Probab., 43(5):2405-2457, 2015. · Zbl 1329.60354
[11] G. Ben Arous and T. Kumagai. Large deviations of Brownian motion on the Sierpinski gasket. Stochastic Process. Appl., 85(2):225-235, 2000. · Zbl 0997.60018
[12] G. Ben Arous and J. Černý. Bouchaud’s model exhibits two different aging regimes in dimension one. Ann. Appl. Probab., 15(2):1161-1192, 2005. · Zbl 1069.60092
[13] D. A. Croydon. Heat kernel fluctuations for a resistance form with non-uniform volume growth. Proc. Lond. Math. Soc. (3), 94(3):672-694, 2007. · Zbl 1116.58025
[14] D. A. Croydon. Volume growth and heat kernel estimates for the continuum random tree. Probab. Theory Related Fields, 140(1-2):207-238, 2008. · Zbl 1133.62066
[15] D. A. Croydon. Scaling limits of stochastic processes associated with resistance forms. Ann. Inst. Henri Poincaré Probab. Stat., 54(4):1939-1968, 2018. · Zbl 1417.60067
[16] D. A. Croydon and B. Hambly. Self-similarity and spectral asymptotics for the continuum random tree. Stochastic Process. Appl., 118(5):730-754, 2008. · Zbl 1143.60012
[17] D. A. Croydon, B. Hambly, and T. Kumagai. Time-changes of stochastic processes associated with resistance forms. Electron. J. Probab., 22:Paper No. 82, 41, 2017. · Zbl 1386.60264
[18] D. A. Croydon, B. M. Hambly, and T. Kumagai. Heat kernel estimates for FIN processes associated with resistance forms. Stochastic Process. Appl., 129(9):2991-3017, 2019. · Zbl 1422.60129
[19] D. A. Croydon and T. Kumagai. Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab., 13:no. 51, 1419-1441, 2008. · Zbl 1191.60121
[20] D. A. Croydon and D. Shiraishi. Scaling limit for random walk on the range of random walk in four dimensions. Ann. Inst. Henri Poincaré Probab. Stat., 59(1):166-184, 2023. · Zbl 1515.60333
[21] L. R. G. Fontes, M. Isopi, and C. M. Newman. Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab., 30(2):579-604, 2002. · Zbl 1015.60099
[22] I. Fujii and T. Kumagai. Heat kernel estimates on the incipient infinite cluster for critical branching processes. In Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS Kôkyûroku Bessatsu, B6, pages 85-95. Res. Inst. Math. Sci. (RIMS), Kyoto, 2008. · Zbl 1135.60060
[23] M. Fukushima and T. Shima. On a spectral analysis for the Sierpiński gasket. Potential Anal., 1(1):1-35, 1992. · Zbl 1081.31501
[24] P. J. Grabner and W. Woess. Functional iterations and periodic oscillations for simple random walk on the Sierpiński graph. Stochastic Process. Appl., 69(1):127-138, 1997. · Zbl 0913.60050
[25] B. M. Hambly. Brownian motion on a homogeneous random fractal. Probab. Theory Related Fields, 94(1):1-38, 1992. · Zbl 0767.60075
[26] B. M. Hambly. Brownian motion on a random recursive Sierpinski gasket. Ann. Probab., 25(3):1059-1102, 1997. · Zbl 0895.60081
[27] B. M. Hambly. On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets. Probab. Theory Related Fields, 117(2):221-247, 2000. · Zbl 0954.35121
[28] B. M. Hambly and T. Kumagai. Fluctuation of the transition density for Brownian motion on random recursive Sierpinski gaskets. Stochastic Process. Appl., 92(1):61-85, 2001. · Zbl 1047.60084
[29] N. Kajino. Non-regularly varying and non-periodic oscillation of the on-diagonal heat kernels on self-similar fractals. In Fractal geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied mathematics, volume 601 of Contemp. Math., pages 165-194. Amer. Math. Soc., Providence, RI, 2013. · Zbl 1325.28009
[30] N. Kajino. On-diagonal oscillation of the heat kernels on post-critically finite self-similar fractals. Probab. Theory Related Fields, 156(1-2):51-74, 2013. · Zbl 1277.28011
[31] J. Kigami. Analysis on fractals, volume 143 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001. · Zbl 0998.28004
[32] J. Kigami and M. L. Lapidus. Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys., 158(1):93-125, 1993. · Zbl 0806.35130
[33] T. Kumagai. Short time asymptotic behaviour and large deviation for Brownian motion on some affine nested fractals. Publ. Res. Inst. Math. Sci., 33(2):223-240, 1997. · Zbl 0888.60030
[34] T. Kumagai. Random walks on disordered media and their scaling limits, volume 2101 of Lecture Notes in Mathematics. Springer, Cham, 2014. Lecture notes from the 40th Probability Summer School held in Saint-Flour, 2010, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].
[35] R. Pemantle. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab., 19(4):1559-1574, 1991. · Zbl 0758.60010
[36] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221-288, 2000. · Zbl 0968.60093
[37] D. Shiraishi and S. Watanabe. Volume and heat kernel fluctuations for the three-dimensional uniform spanning tree. Preprint available at arXiv:2211.15031, 2022.
[38] R. S. Strichartz. Differential equations on fractals. Princeton University Press, Princeton, NJ, 2006. A tutorial. · Zbl 1190.35001
[39] W. Woess. Random walks on infinite graphs and groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000. · Zbl 0951.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.