×

A generalized Kubilius-Barban-Vinogradov bound for prime multiplicities. (English) Zbl 1532.60006

Summary: We present an assessment of the distance in total variation of arbitrary collections of prime factor multiplicities of a random number in \([n] = \{1, \ldots, n\}\) and a collection of independent geometric random variables. More precisely, we impose mild conditions on the probability law of the random sample and the aforementioned collection of prime multiplicities, for which a fast decaying bound on the distance towards a tuple of geometric variables holds. Our results generalize and complement those from J. Kubilius [Probabilistic methods in the theory of numbers. Providence, RI: American Mathematical Society (AMS) (1964; Zbl 0133.30203)] and M. B. Barban and A. I. Vinogradov [Sov. Math., Dokl. 5, 96–98 (1964; Zbl 0166.05702); translation from Dokl. Akad. Nauk SSSR 154, 495–496 (1964)] which consider the particular case of uniform samples in \([n]\) and collection of “small primes”. As applications, we show a generalized version of the celebrated Erdős Kac theorem for not necessarily uniform samples of numbers.

MSC:

60B12 Limit theorems for vector-valued random variables (infinite-dimensional case)
11K65 Arithmetic functions in probabilistic number theory

References:

[1] Arratia, R. On the amount of dependence in the prime factorization of a uniform random integer. In Contemporary combinatorics, volume 10 of Bolyai Soc. Math. Stud., pp. 29-91. János Bolyai Math. Soc., Budapest (2002). MR1919568. · Zbl 1126.11331
[2] Arratia, R., Barbour, A. D., and Tavaré, S. The Poisson-Dirichlet distribution and the scale-invariant Poisson process. Combin. Probab. Comput., 8 (5), 407-416 (1999). MR1731976. · Zbl 0945.60010
[3] Arratia, R. and Stark, D. A total variation distance invariance principle for primes, permutations and Poisson-Dirichlet (1999). Preprint.
[4] Arratia, R. and Tavaré, S. The cycle structure of random permutations. Ann. Probab., 20 (3), 1567-1591 (1992). MR1175278. · Zbl 0759.60007
[5] Barban, M. B. and Vinogradov, A. I. On the number-theoretic basis of probabilistic number theory. Dokl. Akad. Nauk SSSR, 154, 495-496 (1964). MR0163895. · Zbl 0166.05702
[6] Barbour, A. D., Kowalski, E., and Nikeghbali, A. Mod-discrete expansions. Probab. Theory Related Fields, 158 (3-4), 859-893 (2014). MR3176367. · Zbl 1416.62131
[7] Chen, L. H. Y., Jaramillo, A., and Yang, X. A probabilistic approach to the Erdös-Kac theorem for additive functions. ArXiv Mathematics e-prints (2022). arXiv: 2102.05094.
[8] Durrett, R. Probability-theory and examples, volume 49 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2019). ISBN 978-1-108-47368-2. MR3930614. · Zbl 1440.60001
[9] Elliott, P. D. T. A. Probabilistic number theory II: Central limit theorems, volume 240 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York (1980). ISBN 0-387-90438-7. MR560507. · Zbl 0431.10030
[10] Erdös, P. and Kac, M. The Gaussian law of errors in the theory of additive number theoretic functions. Amer. J. Math., 62, 738-742 (1940). MR2374. · Zbl 0024.10203
[11] Harper, A. J. Two new proofs of the Erdős-Kac theorem, with bound on the rate of convergence, by Stein’s method for distributional approximations. Math. Proc. Cambridge Philos. Soc., 147 (1), 95-114 (2009). MR2507311. · Zbl 1195.11100
[12] Kubilius, J. Probabilistic methods in the theory of numbers. Translations of Mathematical Mono-graphs, Vol. 11. American Mathematical Society, Providence, R.I. (1964). MR0160745. · Zbl 0133.30203
[13] Tenenbaum, G. Crible d’Ératosthène et modèle de Kubilius. In Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), pp. 1099-1129. de Gruyter, Berlin (1999). MR1689563. · Zbl 0936.11052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.