×

Weighted Sobolev type inequalities in a smooth metric measure space. (English) Zbl 1532.53067

Summary: In this paper, we obtain weighted Sobolev type inequalities with explicit constants that extend the inequalities obtained by Q. Guo et al. [Math. Res. Lett. 28, No. 5, 1419–1439 (2021; Zbl 1498.53054)] in the Riemannian setting. As an application, we prove some new logarithmic Sobolev type inequalities in some smooth metric measure spaces.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
58J32 Boundary value problems on manifolds

Citations:

Zbl 1498.53054

References:

[1] Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math. (2), 138, 1, 213-242 (1993) · Zbl 0826.58042 · doi:10.2307/2946638
[2] Bidaut-Véron, M.; Véron, L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106, 3, 489-539 (1991) · Zbl 0755.35036 · doi:10.1007/BF01243922
[3] Cherrier, P., Problèmes de Neumann non linéaires sur les variétés riemanniennes, J. Funct. Anal., 57, 2, 154-206 (1984) · Zbl 0552.58032 · doi:10.1016/0022-1236(84)90094-6
[4] Case, J.; Shu, Y.; Wei, G., Rigidity of quasi-Einstein metrics, Differ. Geom. Appl., 29, 1, 93-100 (2011) · Zbl 1215.53033 · doi:10.1016/j.difgeo.2010.11.003
[5] Chen, L.; Lu, G.; Tang, H., Sharp stability of log-Sobolev and Moser-Onofri inequalities on the sphere, J. Funct. Anal., 285 (2023) · Zbl 1526.46021 · doi:10.1016/j.jfa.2023.110022
[6] Du, F.; Mao, J.; Wang, Q.; Xia, C., Estimates for eigenvalues of weighted Laplacian and weighted \(p\)-Laplacian, Hiroshima Math. J., 51, 3, 335-353 (2021) · Zbl 1482.35143 · doi:10.32917/h2020086
[7] Escobar, J., Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J., 37, 3, 687-698 (1988) · Zbl 0666.35014 · doi:10.1512/iumj.1988.37.37033
[8] Escobar, J., Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate, Commun. Pure Appl. Math., 43, 7, 857-883 (1990) · Zbl 0713.53024 · doi:10.1002/cpa.3160430703
[9] Guo, Q.; Hang, F.; Wang, X., Liouville type theorems on manifolds with nonnegative curvature and strictly convex boundary, Math. Res. Lett., 28, 5, 1419-1439 (2021) · Zbl 1498.53054 · doi:10.4310/MRL.2021.v28.n5.a6
[10] Guo, Q.; Wang, X., Uniqueness results for positive harmonic functions on \(\overline{{\mathbb{B} }_n}\) satisfying a nonlinear boundary condition, Calc. Var. Partial Differ. Equ., 59, 146 (2020) · Zbl 1447.31001 · doi:10.1007/s00526-020-01813-6
[11] Gu, P., Li, H.: A proof of Guo-Wang’s conjecture on the uniqueness of positive harmonic functions in the unit ball. arXiv:2306.15565v1
[12] Huang, G.; Zhu, M., Some geometric inequalities on Riemannian manifolds associated with the generalized modified Ricci curvature, J. Math. Phys., 63 (2022) · Zbl 1508.53043 · doi:10.1063/5.0116994
[13] Huang, G.; Ma, B., Sharp bounds for the first nonzero Steklov eigenvalues for \(f\)-Laplacians, Turk. J. Math., 40, 4, 770-783 (2016) · Zbl 1424.35270 · doi:10.3906/mat-1507-96
[14] Huang, G.; Ma, B., Eigenvalue estimates for submanifolds with bounded \(f\)-mean curvature, Proc. Indian Acad. Sci. Math. Sci., 127, 375-381 (2017) · Zbl 1366.53025 · doi:10.1007/s12044-016-0308-1
[15] Huang, G.; Li, Z., Liouville type theorems of a nonlinear elliptic equation for the \(V\)-Laplacian, Anal. Math. Phys., 8, 1, 123-134 (2018) · Zbl 1390.35059 · doi:10.1007/s13324-017-0168-6
[16] Huang, Q.; Ruan, Q., Applications of some elliptic equations in Riemannian manifolds, J. Math. Anal. Appl., 409, 1, 189-196 (2014) · Zbl 1310.58012 · doi:10.1016/j.jmaa.2013.07.004
[17] Ilias, S.; Shouman, A., Sobolev inequalities on a weighted Riemannian manifold of positive Bakry-Émery curvature and convex boundary, Pac. J. Math., 294, 2, 423-451 (2018) · Zbl 1386.35089 · doi:10.2140/pjm.2018.294.423
[18] Kasue, A., A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold, Jpn. J. Math. (N.S.), 8, 2, 309-341 (1982) · Zbl 0518.53048 · doi:10.4099/math1924.8.309
[19] Li, X., Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl., 84, 10, 1361-1995 (2005) · Zbl 1082.58036 · doi:10.1016/j.matpur.2005.04.002
[20] Li, H.; Wei, Y., \(f\)-minimal surface and manifold with positive \(m\)-Bakry-Émery Ricci curvature, J. Geom. Anal., 25, 421-435 (2015) · Zbl 1320.53075 · doi:10.1007/s12220-013-9434-5
[21] Ma, L.; Du, S., Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians, C. R. Math. Acad. Sci. Paris, 348, 21-22, 1203-1206 (2010) · Zbl 1208.58028 · doi:10.1016/j.crma.2010.10.003
[22] Wei, G.; Wylie, W., Comparison geometry for the Bakry-Émery Ricci tensor, J. Differ. Geom., 83, 2, 377-405 (2009) · Zbl 1189.53036 · doi:10.4310/jdg/1261495336
[23] Xia, C.; Xiong, C., Escobar’s Conjecture on a sharp lower bound for the first nonzero Steklov eigenvalue, Peking Math. J. (2023) · Zbl 07923292 · doi:10.1007/s42543-023-00068-2
[24] Zeng, F., Gradient estimates for a nonlinear parabolic equation on complete smooth metric measure spaces, Mediterr. J. Math. (N.S.), 18, 4, 21 (2021) · Zbl 1480.53111
[25] Zeng, L.; Sun, H., Eigenvalues of the drifting Laplacian on smooth metric measure spaces, Pac. J. Math., 319, 2, 439-470 (2022) · Zbl 1501.35269 · doi:10.2140/pjm.2022.319.439
[26] Zhang, L., Global lower bounds on the first eigenvalue for a diffusion operator, Bull. Malays. Math. Sci. Soc., 43, 5, 3847-3862 (2020) · Zbl 1450.35202 · doi:10.1007/s40840-020-00897-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.