×

Long-time behavior for evolution processes associated with non-autonomous nonlinear Schrödinger equation. (English) Zbl 1532.35422

Summary: We consider non-autonomous nonlinear Schrödinger equation with homogeneous Dirichlet boundary conditions in a bounded smooth domain and time-dependent forcing that models the motion of waves in a quantum-mechanical system. We address the problem of the local and global well posedness and using rescaling of time we prove the existence of a compact pullback attractor for the associated evolution process. Moreover, we prove that the pullback attractor has finite fractal dimension. To the best of our knowledge, our approach has not been used in the literature to treat the non-autonomous Schrödinger equation.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35B40 Asymptotic behavior of solutions to PDEs
35B41 Attractors
35B45 A priori estimates in context of PDEs
28A80 Fractals
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Abounouh, M., Asymptotic behaviour for a weakly damped Schrödinger equation in dimension two. Appl. Math. Lett., 6, 29-32 (1993) · Zbl 0791.35125
[2] Aragão, G. S.; Bezerra, F. D.M.; Figueroa-López, R. N.; Nascimento, M. J.D., Continuity of pullback attractors for evolution processes associated with semilinear damped wave equations with time-dependent coefficients. J. Differ. Equ., 30-67 (2021) · Zbl 1480.37084
[3] Bezerra, F. D.M.; Carvalho, A. N.; Dlotko, T.; Nascimento, M. J.D., Fractional Schrödinger equation: solvability and connection with classical Schrödinger equation. J. Math. Anal. Appl., 1, 336-360 (2018) · Zbl 1516.35453
[4] Carvalho, A. N.; Langa, J. A.; Robinson, J. C., Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems. Applied Mathematical Sciences (2012), Springer-Verlag: Springer-Verlag New York
[5] Cazenave, T., An Introduction to Nonlinear Schrödinger Equations, vol. 22 (1989), Universidade Federal do Rio de Janeiro, Centro de Ciências Matemáticas e da Natureza, Instituto de Matemática
[6] Chen, Y., Stability of black solitons in media with arbitrary nonlinearity. Opt. Lett., 7, 462-464 (1996)
[7] Chueshov, I.; Lasiecka, I., Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping. J. Differ. Equ., 42-86 (2007) · Zbl 1116.35017
[8] Chueshov, I.; Lasiecka, I., Long-time behavior of second order evolution equations with nonlinear damping. Mem. Am. Math. Soc., 912 (2008), viii+183 · Zbl 1151.37059
[9] Bartle, R. G., The Elements of Integration and Lebesgue Measure (1995), John Wiley and Sons: John Wiley and Sons New York · Zbl 0838.28001
[10] Cholewa, J. W.; Dlotko, T., Global Attractors in Abstract Parabolic Problems (2000), University Press: University Press Cambridge · Zbl 0954.35002
[11] Ghidaglia, J. M., Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties. C. R. Acad. Sci., Sér. 1 Math., 7, 291-294 (1987) · Zbl 0638.35020
[12] Ghidaglia, J. M., Finite dimensional behavior for weakly damped driven Schrödinger equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 4, 365-405 (1988) · Zbl 0659.35019
[13] Goubet, O.; Zahrouni, E., Finite dimensional global attractor for a fractional nonlinear Schrödinger equation. NoDEA Nonlinear Differ. Equ. Appl., 5, 1-16 (2017) · Zbl 1382.35266
[14] Goubet, O.; Zahrouni, E., Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete Contin. Dyn. Syst., Ser. S, 8, 2933-2945 (2021) · Zbl 1476.35237
[15] Goubet, O., Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in \(\mathbb{R}^2\). Adv. Differ. Equ., 3, 337-360 (1998) · Zbl 0947.35154
[16] Hagen, N.; Zagrebnov, V., Linear non-autonomous Cauchy problems and evolution semigroups. Adv. Differ. Equ., 3/4, 289-340 (2009) · Zbl 1180.35371
[17] Heard, M., A class of hyperbolic Volterra integrodifferential equations. Nonlinear Anal., 1, 79-93 (1984) · Zbl 0535.45007
[18] Ikawa, M., Mixed problems for hyperbolic equations of second order. J. Math. Soc. Jpn., 580-608 (1968) · Zbl 0172.14304
[19] Ikehata, R., On solutions to some quasilinear hyperbolic equations with nonlinear inhomogeneous terms. Nonlinear Anal., 2, 181-203 (1991) · Zbl 0765.35030
[20] Ishida, H.; Yuzawa, Y., Oscillatory properties for semilinear degenerate hyperbolic equations of second order. J. Math. Anal. Appl., 2, 624-632 (2009) · Zbl 1173.35607
[21] Kato, T., Abstract Differential Equations and Nonlinear Mixed Problems (1985), Accademia Nazionale dei Lincei Scuola Normale Superiore: Accademia Nazionale dei Lincei Scuola Normale Superiore Pisa · Zbl 0648.35001
[22] Kato, T., Linear evolution equations of “hyperbolic” type. J. Fac. Sci., Univ. Tokyo, Sect. I, 241-258 (1970) · Zbl 0222.47011
[23] Kato, T., Linear evolution equations of “hyperbolic” type II. J. Math. Soc. Jpn., 648-666 (1973) · Zbl 0262.34048
[24] Kato, T., Linear and quasi-linear equations of evolution of hyperbolic type, 125-191 · Zbl 0456.35052
[25] Kato, T., On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré A, Phys. Théor., 113-129 (1987) · Zbl 0632.35038
[26] Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations, 25-70 · Zbl 0315.35077
[27] Kisyński, J., Sur les opérateurs de Green des problèmes de Cauchy abstraits. Stud. Math., 285-328 (1963/1964) · Zbl 0117.10202
[28] Li, Y.; Yang, Z.; Da, F., Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete Contin. Dyn. Syst., 10, 5975-6000 (2019) · Zbl 1440.37074
[29] Linares, F.; Ponce, G., Introduction to Nonlinear Dispersive Equations (2015), Springer: Springer NewYork · Zbl 1310.35002
[30] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[31] Ma, T.; Marín-Rubio, P.; Chuño, C., Dynamics of wave equations with moving boundary. J. Differ. Equ., 5, 3317-3342 (2017) · Zbl 1362.35341
[32] Pathak, H. K., An Introduction to Nonlinear Analysis and Fixed Point Theory (2018), Springer: Springer Singapore · Zbl 1447.47002
[33] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[34] She, L.; Li, Y.; Wang, R., Pullback-forward dynamics for damped Schrödinger equations with time-dependent forcing. Discrete Dyn. Nat. Soc. (2018) · Zbl 1417.35183
[35] Sun, C.; Cao, D.; Duan, J., Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity. Nonlinearity, 2645-2665 (2006) · Zbl 1113.35133
[36] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68 (2012), Springer Science & Business Media
[37] Tsutsumi, M., On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations. J. Math. Anal. Appl., 2, 328-341 (1990) · Zbl 0705.35131
[38] Tsutsumi, Y., Scattering problem for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré A, Phys. Théor., 3, 321-347 (1985) · Zbl 0612.35104
[39] Uesaka, H., A pointwise oscillation property of semilinear wave equations with time-dependent coefficients II. Nonlinear Anal., 2563-2571 (2001) · Zbl 1042.35597
[40] Zhu, K.; Xie, Y.; Zhou, F., Attractors for the nonclassical reaction-diffusion equations on time-dependent spaces. Bound. Value Probl. (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.