×

Singularities in finite time of the full compressible Euler equations in \(\mathbb{R}^d\). (English) Zbl 1532.35363

Summary: The present article is concerned with the study of blow-up phenomena of the smoooth solutions for the full compressible Euler equations in \(\mathbb{R}^d\), \(d \geq 1\), which have always been a great concern to physicists and mathematicians throughout history. The approach is to construct exact explicit function to study singularities in finite time of the spherically symmetric solutions, provided the initial data satisfy some conditions. Compared with the results obtained by T. C. Sideris [Commun. Math. Phys. 101, 475–485 (1985; Zbl 0606.76088)], in this article, the initial velocity field is not required to have a compact support and the initial density and entropy is not equal to a constant outside the support of the initial velocity field.

MSC:

35Q31 Euler equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35L45 Initial value problems for first-order hyperbolic systems
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws
35B44 Blow-up in context of PDEs
35B06 Symmetries, invariants, etc. in context of PDEs
35A21 Singularity in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs

Citations:

Zbl 0606.76088
Full Text: DOI

References:

[1] Chemin, J. Y., Dynamique des gaz à masse totale finite. Asymp. Anal., 215-220 (1990) · Zbl 0708.76110
[2] Chemin, J. Y., Remarques sur l’apparition de singularités dans les écoulements eulériens compressibles. Comm. Math. Phys., 323-329 (1990) · Zbl 0711.76076
[3] Chen, G. Q., Remarks on spherically symmetric solutions to the compressible Euler equations. Proc. Roy. Soc. Edinburgh Sect. A, 243-259 (1997) · Zbl 0877.35100
[4] Chen, G. Q.; Frid, H.; Li, Y., Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. Comm. Math. Phys., 201-217 (2002) · Zbl 1029.76045
[5] Chen, G. Q.; Glimm, J., Global solutions to the compressible Euler equations with geometrical structure. Comm. Math. Phys., 153-193 (1996) · Zbl 0857.76073
[6] Chen, G. Q.; LeFloch, P., Entropies and flux-splittings for the isentropic Euler equations. Chin. Ann. Math. Ser. B, 145-158 (2001) · Zbl 0980.35096
[7] Chen, G. Q.; Wang, D., The Cauchy problem for the Euler equations for compressible fluids, 421-543 · Zbl 1230.35096
[8] DiPerna, R., Convergence of viscosity method for isentropic gas dynamics. Comm. Math. Phys., 1-30 (1983) · Zbl 0533.76071
[9] Guo, B. L.; Wu, X. L., Qualitative analysis of solution for the full compressible Euler equations in \(\mathbb{R}^N\). Indiana Univ. Math. J., 343-373 (2018) · Zbl 1406.35250
[10] Hadz̆ić, M.; Jiang, J., Expanding large global solutions of the equations of compressible fluid mechanics. Invent. Math., 1205-1266 (2018) · Zbl 1426.65152
[11] John, F., Blow-up for quasilinear wave equations in three space dimensions. Comm. Pure Appl. Math., 29-51 (1981) · Zbl 0453.35060
[12] Lei, Z.; Du, Y.; Zhang, Q. T., Singularities of solutions to compressible Euler equations with vacuum. Math. Res. Lett., 41-50 (2013) · Zbl 1284.35329
[13] Li, T. H.; Wang, D. H., Blowup phenomena of solutions to the Euler equations for compressible fluid flow. J. Differential Equations, 91-101 (2006) · Zbl 1083.76051
[14] Lin, L. W., On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl., 406-425 (1987) · Zbl 0644.76084
[15] Lions, P. L.; Perthame, B.; Souganidis, P., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math., 599-638 (1996) · Zbl 0853.76077
[16] Lions, P. L.; Perthame, B.; Tadmor, E., Kinetic formulation of the isentropic gas dynamics and p-systems. Comm. Math. Phys., 169-172 (1994) · Zbl 0799.35151
[17] Majda, A.
[18] Makino, T.; Mizohata, K.; Ukai, S., The global weak solutions of the compressible Euler equation with spherical symmetry, Japan. J. Ind. Appl. Math., 431-449 (1992) · Zbl 0761.76085
[19] Makino, T.; Mizohata, K.; Ukai, S., The global weak solutions of the compressible Euler equation with spherical symmetry (II), Japan. J. Ind. Appl. Math., 417-426 (1994) · Zbl 0812.35101
[20] Merle, F.; Raphaël, P.; Rodnianski, I.; Szeftel, J., On the implosion of compressible fluid I: Smooth self-similar inviscid profiles. Ann. Math., 567-778 (2022) · Zbl 1497.35384
[21] Merle, F.; Raphaël, P.; Rodnianski, I.; Szeftel, J., On the implosion of compressible fluid II: Singularity formation. Ann. Math., 779-889 (2022) · Zbl 1497.35385
[22] Sideris, T. C., Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys., 475-485 (1985) · Zbl 0606.76088
[23] Sideris, T. C., Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum. Arch. Ration. Mech. Anal., 141-176 (2017) · Zbl 1367.35115
[24] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0807.35002
[25] Taylor, G. I., The formation of a blast wave by a very intense explosion · Zbl 0036.26404
[26] Taylor, G. I., The Propagation and Decay of Blast Waves (1944), British Civilian Defense Research Committee
[27] Tsuge, N., Global \(L^\infty\) solutions of the compressible Euler equations with spherical symmetry. J. Math. Kyoto Univ., 457-524 (2006) · Zbl 1145.35080
[28] Wagner, D. H., Equivalence of Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differential Equations, 118-136 (1987) · Zbl 0647.76049
[29] Wong, S.; Yuen, M. W., Blow-up phenomena for compressible Euler equations with non-vacuum initial data. Z. Angew. Math. Phys., 2941-2955 (2015) · Zbl 1327.35308
[30] Wu, X. L., On the blow-up phenomena of solutions for the full compressible Euler equations in \(\mathbb{R}^N\). Nonlinearity, 3837-3856 (2016) · Zbl 1359.35141
[31] Wu, X. L., Isentropic approximation and Gevrey regularity for the full compressible Euler equations in \(\mathbb{R}^N\). J. Math. Fluid Mech., 1-16 (2021) · Zbl 1468.35123
[32] Wu, X. L., Isentropic approximation of the compressible Euler equations in Besov spaces. Stud. Appl. Math., 1050-1062 (2021) · Zbl 1472.35280
[33] Yuen, M. W., Blowup for irrotational \(\mathcal{C}^1\) solutions of the compressible Euler equations in \(\mathbb{R}^N\). Nonlinear Anal., 132-141 (2017) · Zbl 1366.35009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.