×

Blowup analysis for a quasi-exact 1D model of 3D Euler and Navier-Stokes. (English) Zbl 1532.35343

Summary: We study the singularity formation of a quasi-exact 1D model proposed by T. Y. Hou and C. Li [Commun. Pure Appl. Math. 61, No. 5, 661–697 (2008; Zbl 1138.35077)]. This model is based on an approximation of the axisymmetric Navier-Stokes equations in the \(r\) direction. The solution of the 1D model can be used to construct an exact solution of the original 3D Euler and Navier-Stokes equations if the initial angular velocity, angular vorticity, and angular stream function are linear in \(r\). This model shares many intrinsic properties similar to those of the 3D Euler and Navier-Stokes equations. It captures the competition between advection and vortex stretching as in the 1D [S. De Gregorio, J. Stat. Phys. 59, No. 5–6, 1251–1263 (1990; Zbl 0712.76027); Math. Methods Appl. Sci. 19, No. 15, 1233–1255 (1996; Zbl 0860.35101)] model. We show that the inviscid model with weakened advection and smooth initial data or the original 1D model with Hölder continuous data develops a self-similar blowup. We also show that the viscous model with weakened advection and smooth initial data develops a finite time blowup. To obtain sharp estimates for the nonlocal terms, we perform an exact computation for the low-frequency Fourier modes and extract damping in leading order estimates for the high-frequency modes using singularly weighted norms in the energy estimates. The analysis for the viscous case is more subtle since the viscous terms produce some instability if we just use singular weights. We establish the blowup analysis for the viscous model by carefully designing an energy norm that combines a singularly weighted energy norm and a sum of high-order Sobolev norms.
{© 2024 IOP Publishing Ltd & London Mathematical Society}

MSC:

35Q30 Navier-Stokes equations
35Q31 Euler equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35B44 Blow-up in context of PDEs
35C06 Self-similar solutions to PDEs
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
68V05 Computer assisted proofs of proofs-by-exhaustion type

References:

[1] Buckmaster, T.; Shkoller, S.; Vicol, V., Formation of shocks for 2D isentropic compressible Euler, Commun. Pure Appl. Math., 75, 2069-120 (2022) · Zbl 1498.35405 · doi:10.1002/cpa.21956
[2] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure Appl. Math., 35, 771-831 (1982) · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[3] Chen, J., On the regularity of the De Gregorio model for the 3D Euler equations, J. Eur. Math. Soc., 1-59 (2023) · doi:10.4171/jems/1399
[4] Chen, J., On the slightly perturbed De Gregorio model on S^1, Arch. Ration. Mech. Anal., 241, 1843-69 (2021) · Zbl 1475.35265 · doi:10.1007/s00205-021-01685-w
[5] Chen, J., Remarks on the smoothness of the \(####\) asymptotically self-similar singularity in the 3D Euler and 2D Boussinesq equations (2023)
[6] Chen, J.; Hou, T. Y., Finite time blowup of 2D Boussinesq and 3D Euler equations with \(####\) velocity and boundary, Commun. Math. Phys., 383, 1559-667 (2021) · Zbl 1485.35071 · doi:10.1007/s00220-021-04067-1
[7] Chen, J.; Hou, T. Y., Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data (2022)
[8] Chen, J.; Hou, T. Y.; Huang, D., On the finite time blowup of the De Gregorio model for the 3D Euler equations, Commun. Pure Appl. Math., 74, 1282-350 (2021) · Zbl 1469.35053 · doi:10.1002/cpa.21991
[9] Constantin, P., Note on loss of regularity for solutions of the 3D incompressible Euler and related equations, Commun. Math. Phys., 104, 311-26 (1986) · Zbl 0655.76041 · doi:10.1007/BF01211598
[10] Constantin, P., On the Euler equations of incompressible fluids, Bull. Am. Math. Soc, 44, 603-21 (2007) · Zbl 1132.76009 · doi:10.1090/S0273-0979-07-01184-6
[11] Constantin, P.; Lax, P. D.; Majda, A., A simple one-dimensional model for the three-dimensional vorticity equation, Commun. Pure Appl. Math., 38, 715-24 (1985) · Zbl 0615.76029 · doi:10.1002/cpa.3160380605
[12] Córdoba, D.; Martínez-Zoroa, L., Blow-up for the incompressible 3D-Euler equations with uniform \(####\) force (2023)
[13] Córdoba, D.; Martínez-Zoroa, L.; Zheng, F., Finite time singularities to the 3D incompressible Euler equations for solutions in \(#### (2023)\)
[14] De Gregorio, S., On a one-dimensional model for the three-dimensional vorticity equation, J. Stat. Phys., 59, 1251-63 (1990) · Zbl 0712.76027 · doi:10.1007/BF01334750
[15] De Gregorio, S., A partial differential equation arising in a 1D model for the 3D vorticity equation, Math. Methods Appl. Sci., 19, 1233-55 (1996) · Zbl 0860.35101 · doi:10.1002/(SICI)1099-1476(199610)19:153.0.CO;2-W
[16] Elgindi, T. M., Finite-time singularity formation for \(####\) solutions to the incompressible Euler equations on R^3, Ann. Math., 194, 647-727 (2021) · Zbl 1492.35199 · doi:10.4007/annals.2021.194.3.2
[17] Elgindi, T. M.; Jeong, I-J, Finite-time singularity formation for strong solutions to the axi-symmetric 3D Euler equations, Ann. PDE, 5, 16 (2019) · Zbl 1436.35055 · doi:10.1007/s40818-019-0071-6
[18] Elgindi, T. M.; Jeong, I-J, On the effects of advection and vortex stretching, Arch. Ration. Mech. Anal., 235, 1763-817 (2020) · Zbl 1434.35091 · doi:10.1007/s00205-019-01455-9
[19] Elgindi, T. M.; Jeong, I-J, The incompressible Euler equations under octahedral symmetry: singularity formation in a fundamental domain, Adv. Math., 393 (2021) · Zbl 1496.35297 · doi:10.1016/j.aim.2021.108091
[20] Elgindi, T. M.; Khalil, K. R S., Strong ill-posedness in \(####\) for the Riesz transform problem (2022)
[21] Gibbon, J., The three-dimensional Euler equations: where do we stand?, Physica D, 237, 1894-904 (2008) · Zbl 1143.76389 · doi:10.1016/j.physd.2007.10.014
[22] Hou, T. Y., Potentially singular behavior of the 3D Navier-Stokes equations, Found. Comput. Math., 23, 2251-99 (2023) · Zbl 1529.35334 · doi:10.1007/s10208-022-09578-4
[23] Hou, T. Y., Potential singularity of the 3D Euler equations in the interior domain, Found. Comput. Math., 23, 2203-49 (2023) · Zbl 1529.35354 · doi:10.1007/s10208-022-09585-5
[24] Lei, Z.; Hou, T. Y., On the stabilizing effect of convection in three-dimensional incompressible flows, Commun. Pure Appl. Math., 62, 501-64 (2009) · Zbl 1171.35095 · doi:10.1002/cpa.20254
[25] Hou, T. Y.; Li, C., Dynamic stability of the three-dimensional axisymmetric Navier-Stokes equations with swirl, Commun. Pure Appl. Math., 61, 661-97 (2008) · Zbl 1138.35077 · doi:10.1002/cpa.20212
[26] Huang, D.; Qin, X.; Wang, X.; Wei, D., Self-similar finite-time blowups with smooth profiles of the generalized Constantin-Lax-Majda model (2023)
[27] Kenig, C. E.; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166, 645-75 (2006) · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4
[28] Kiselev, A., Small scales and singularity formation in fluid dynamics, vol 3 (2018) · Zbl 1448.35398
[29] Landman, M. J.; Papanicolaou, G. C.; Sulem, C.; Sulem, P-L, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension, Phys. Rev. A, 38, 3837 (1988) · doi:10.1103/PhysRevA.38.3837
[30] Li, C.; Zhang, K., A note on the Gagliardo-Nirenberg inequality in a bounded domain (2021)
[31] Luo, G.; Hou, T., Toward the finite-time blowup of the 3D incompressible Euler equations: a numerical investigation, SIAM Multiscale Model. Simul., 12, 1722-76 (2014) · Zbl 1316.35235 · doi:10.1137/140966411
[32] Lushnikov, P. M.; Silantyev, D. A.; Siegel, M., Collapse versus blow-up and global existence in the generalized Constantin-Lax-Majda equation, J. Nonlinear Sci., 31, 82 (2021) · Zbl 1479.35684 · doi:10.1007/s00332-021-09737-x
[33] Majda, A.; Bertozzi, A., Vorticity and Incompressible Flow, vol 27 (2002), Cambridge University Press · Zbl 0983.76001
[34] Martel, Y.; Merle, F.; Raphaël, P., Blow up for the critical generalized Korteweg-de Vries equation. I: dynamics near the soliton, Acta Math., 212, 59-140 (2014) · Zbl 1301.35137 · doi:10.1007/s11511-014-0109-2
[35] McLaughlin, D.; Papanicolaou, G.; Sulem, C.; Sulem, P., Focusing singularity of the cubic Schrödinger equation, Phys. Rev. A, 34, 1200 (1986) · doi:10.1103/PhysRevA.34.1200
[36] Merle, F.; Raphael, P., The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 161, 157-222 (2005) · Zbl 1185.35263 · doi:10.4007/annals.2005.161.157
[37] Merle, F.; Zaag, H., Stability of the blow-up profile for equations of the type \(####\), Duke Math. J, 86, 143-95 (1997) · Zbl 0872.35049 · doi:10.1215/S0012-7094-97-08605-1
[38] Miller, E., Finite-time blowup for the inviscid vortex stretching equation, Nonlinearity, 36, 4086 (2023) · Zbl 1519.35235 · doi:10.1088/1361-6544/acd909
[39] Okamoto, H.; Sakajo, T.; Wunsch, M., On a generalization of the Constantin-Lax-Majda equation, Nonlinearity, 21, 2447 (2008) · Zbl 1221.35300 · doi:10.1088/0951-7715/21/10/013
[40] Sarria, A.; Saxton, R., Blow-up of solutions to the generalized inviscid Proudman-Johnson equation, J. Math. Fluid Mech., 15, 493-523 (2013) · Zbl 1277.35077 · doi:10.1007/s00021-012-0126-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.