×

Existence and concentration of positive solutions for a fractional Schrödinger logarithmic equation. (English) Zbl 1532.35198

Summary: In this paper, we study the existence and concentration of positive solutions for the following fractional Schrödinger logarithmic equation: \[ \begin{cases} \varepsilon^{2s} (-\Delta)^s u+V(x)u =u\log u^2,\:\; x\in \mathbb{R}^N,\\ u\in H^s(\mathbb{R}^N), \end{cases} \] where \(\varepsilon > 0\) is a small parameter, \( N> 2s\), \(s \in ( 0 ,1)\), \((-\Delta )^s\) is the fractional Laplacian, the potential \(V\) is a continuous function having a global minimum. Using variational method to modify the nonlinearity with the sum of a \(C^1\) functional and a convex lower semicontinuous functional, we prove the existence of positive solutions and concentration around of a minimum point of \(V\) when \(\varepsilon\) tends to zero.

MSC:

35J61 Semilinear elliptic equations
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Applebaum, D.Lévy processes-from probability to finance and quantum groups. Notices Am Math Soc. 2004;51:1336-1347. · Zbl 1053.60046
[2] d’Avenia, P, Squassina, M.Ground states for fractional magnetic operators. ESAIM Control Optim Calc Var. 2018;24(1):1-24. · Zbl 1400.49059
[3] Ichinose, T.Magnetic relativistic Schrödinger operators and imaginary-time path integrals, mathematical physics, spectral theory and stochastic analysis. Oper Theory Adv Appl. 2013;232:247-297. · Zbl 1266.81079
[4] Cazenave, T, Haraux, A.Equations devolution avec non-linearite logarithmique. Ann Fac Sci Toulouse Math. 1980;2(1):21-51. · Zbl 0411.35051
[5] Bialynicki-Birula, I, Mycielski, J.Nonlinear wave mechanics. Ann Phys. 1976;100(1-2):62-93.
[6] d’Avenia, P, Montefusco, E, Squassina, M.On the logarithmic Schrödinger equation. Commun Contemp Math. 2014;16(2): Article ID 1350032. · Zbl 1292.35259
[7] Guerrero, P, Lopez, JL, Nieto, J.Global \(H^1\) solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal RWA. 2010;11:79-87. · Zbl 1180.81071
[8] d’Avenia, P, Squassina, M, Zenari, M.Fractional logarithmic Schrödinger equations. Math Methods Appl Sci. 2015;38(18):5207-5216. · Zbl 1334.35408
[9] Zhang, H, Hu, Q.Existence of the global solution for fractional logarithmic Schrödinger equation. Comput Math Appl. 2018;75(1):161-169. · Zbl 1418.35374
[10] Dávila, J, del Pino, M, Wei, J.Concentrating standing waves for the fractional nonlinear Schrödinger equation. J Differ Equ. 2014;256(2):858-892. · Zbl 1322.35162
[11] Figueiredo, GM, Siciliano, G.A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in \(\mathbb{R}^N \). NoDEA. 2016;23(2):22. Article ID 12. · Zbl 1375.35599
[12] He, X, Zou, W.Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc Var Partial Differ Equ. 2016;55(4):39. m Paper No. 91. · Zbl 1395.35193
[13] Shen, Z, Gao, F, Yang, M.Ground states for nonlinear fractional Choquard equations with general nonlinearities. Math Methods Appl Sci. 2016;39(14):4082-4098. · Zbl 1344.35168
[14] Ambrosio, V. Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, arXiv:1711.03625v1 [math.AP]. 2017 Nov 9.
[15] Ambrosio, V.Multiplicity and concentration results for a fractional Choquard equation via penalization method. Potential Anal. 2019;50(1):55-82. · Zbl 1408.35001
[16] Alves, CO, de Morais Filho, DC.Existence and concentration of positive solutions for a Schrödinger logarithmic equation. Z Angew Math Phys. 2018;69(6):144. · Zbl 1411.35090
[17] Alves, CO, Ji, C. Multiple positive solutions for a Schrödinger logarithmic equation, arXiv:1901.10329v2[math.AP].
[18] Alves, CO, Ji, C.Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method. Calc Var. 2020;59(1):21. · Zbl 1433.35023
[19] Tanaka, K, Zhang, C. Multi-bump solutions for logarithmic Schrödinger equations, Cal. Var. Partial Differ. Equ. doi: . · Zbl 1383.35217
[20] Ji, C, Szulkin, A.A logarithmic Schrödinger equation with asymptotic conditions on the potential. J Math Anal Appl. 2016;437(1):241-254. · Zbl 1333.35010
[21] Squassina, M, Szulkin. Multiple solutions to logarithmic Schrödinger equations with periodic potential. Cal Var Partial Differ Equ. 2015;54(1):585-597. · Zbl 1326.35358
[22] Szulkin, A.Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann Inst H Poincaré Anal Non Linéaire. 1986;3(2):77-109. · Zbl 0612.58011
[23] Ambrosio, V.Concentrating solutions for a class of nonlinear fractional Schrödinger equations in \(\mathbb{R}^N \). Rev Mat Iberoam. 2019;35(5):1367-1414. · Zbl 1430.35013
[24] Brézis, H, Lieb, E.A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc. 1983;88(3):486-490. · Zbl 0526.46037
[25] Shuai, W.Multiple solutions for logarithmic Schrödinger equations. Nonlinearity. 2019;32(6):2201-2225. · Zbl 1418.35102
[26] Cotsiolis, A, Tavoularis, N.On logarithmic Sobolev inequalities for higher order fractional derivatives. C R Acad Sci Paris Ser I. 2005;340(3):205-208. · Zbl 1095.26009
[27] Willem, M. Minimax theorems, volume 24 of Progress in nonlinear differential equations and their applications. Boston, MA: Birkhăuser Boston, Inc; 1996.
[28] Lions, PL.The concentration-compactness principle in the calculus of variations. the locally compact case, part 2. Anal Inst H Poincaré Sect C. 1984;1:223-253. · Zbl 0704.49004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.