×

A note on gradient estimates for elliptic equations with discontinuous coefficients. (English) Zbl 1532.35094

Summary: The authors will use a method in metric geometry to show an \(L^p\)-estimate for gradient of the weak solutions to elliptic equations with discontinuous coefficients, even the BMO semi-norms of the coefficients are not small. They also extend them to the weak solutions to parabolic equations.

MSC:

35B45 A priori estimates in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35J15 Second-order elliptic equations
35R05 PDEs with low regular coefficients and/or low regular data
Full Text: DOI

References:

[1] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 2, 289-391 (2014) · Zbl 1312.53056 · doi:10.1007/s00222-013-0456-1
[2] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry (2001), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 0981.51016
[3] Burago, Y.; Gromov, M.; Perel’man, G., A.D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk., 47, 2, 3-51 (1992) · Zbl 0802.53018
[4] Burch, C. C., The Dini condition and regularity of weak solutions of elliptic equations, J. Differential Equations., 30, 3, 308-323 (1978) · Zbl 0362.35021 · doi:10.1016/0022-0396(78)90003-7
[5] Byun, S.; Wang, L. H., Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57, 10, 1283-1310 (2004) · Zbl 1112.35053 · doi:10.1002/cpa.20037
[6] Caffarelli, L. A.; Peral, I., On W^1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51, 1, 1-21 (1998) · Zbl 0906.35030 · doi:10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
[7] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 3, 428-517 (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094
[8] Han, Q.; Lin, F. H., Elliptic Partial Differential Equations (2011), New York: Courant Institute of Mathematical Sciences, New York · Zbl 1210.35031
[9] Peng, Y., Zhang, H. C. and Zhu, X. P., Weyl’s lemma on RCD(K, N) metric measure spaces, 2022, arXiv:2212.09022v1.
[10] Peral, I.; Soria, F., A note on W^1,p estimates for quasilinear parabolic equations, 121-131 (2002), San Marcos, TX: Southwest Texas State Univ., San Marcos, TX · Zbl 1025.35007
[11] Petrunin, A., Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal., 8, 1, 123-148 (1998) · Zbl 0903.53045 · doi:10.1007/s000390050050
[12] Wu, H. H., An elementary method in the study of nonnegative curvature, Acta Math., 142, 1-2, 57-78 (1979) · Zbl 0403.53022 · doi:10.1007/BF02395057
[13] Zhang, H. C.; Zhu, X. P., Yau’s gradient estimates on Alexandrov spaces, J. Differential Geom., 91, 3, 445-522 (2012) · Zbl 1258.53075 · doi:10.4310/jdg/1349292672
[14] Calc. Var. Partial Differential Equations.2016554art. 93, 30pp
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.