×

Volumes of sublevel sets of nonnegative forms and complete monotonicity. (English) Zbl 1532.14097

Let \(\mathcal{C}_{d,n}\) be the convex cone consisting of \(n\)-variate degree \(d\) homogeneous polynomials with real coefficients that are strictly positive on \(\mathbb{R}^n \setminus \{ \mathbf{0} \}\).
In Theorem 1.1, the authors not only find the representation of the volume function \(f: \mathcal{C}_{d,n} \rightarrow \mathbb{R}\) defined as \(f(g) = \text{vol}(\{ g \leq 1 \})\) for \(g \in \mathcal{C}_{d,n}\), but they also prove that the Lebesgue volume of the sublevel set \(\{ g \leq 1 \}\) defines a completely monotone function on \(\mathcal{C}_{d,n}\). In addition, they demonstrate that for a nonnegative form \(h \in \overline{\mathcal{C}_{e,n}}\) of degree \(e\geq 0\), the function \(f_h: \mathcal{C}_{d,n} \rightarrow \mathbb{R}\) given by \(f_h(g) = \int_{\{ g \leq 1 \}} h(\mathbf{x}) d\mathbf{x}\) is monotone that generalize Theorem 1.1. The authors also discuss related properties and prove a version of Theorem 1.1 for sum of squares forms.
Furthermore, they investigate the cone of nonnegative forms with sublevel sets of finite volumes. Let \(\mathcal{V}_{d,n}\) be the set of \(n\)-variate homogeneous polynomials \(g\) of degree \(d\) such that the volume \(\text{vol}(\{ g \leq 1 \})\) is finite. Note that \(C_{d,n}\subseteq \mathcal{V}_{d,n}\subseteq \overline{C_{d,n}}\) and \(\mathcal{V}_{d,n}\) is a convex cone in the space of \(n\)-variate homogeneous polynomials of degree \(d\). In Theorem 1.4, they provide a complete characterization of binary forms whose sublevel sets have finite Lebesgue volume: for \(g\in \overline{C_{d,2}}\), \(g\in\mathcal{V}_{d,2}\) if and only if \(g\) has a zero of order at most \(\frac{d}{2}-1\). In particular, \(\mathcal{V}_{4,2} = \mathcal{C}_{4,2}\).
Moreover, the authors prove that sublevel sets have finite volume for general polynomials on the boundary of the cone of nonnegative forms (see Theorem 1.6). Finally, they solve the problem of comparing \(L^2\) and \(L^1\) norms of the measure naturally associated with a positive definite form (see Theorem 1.12).

MSC:

14P10 Semialgebraic sets and related spaces
26B15 Integration of real functions of several variables: length, area, volume
26C05 Real polynomials: analytic properties, etc.
26C10 Real polynomials: location of zeros
44A10 Laplace transform
51M25 Length, area and volume in real or complex geometry
Full Text: DOI

References:

[1] Agrachev, A., Kozhasov, Kh., and Uschmajew, A., Chebyshev polynomials and best rank-one approximation ratio, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 308-331, doi:10.1137/19M1269713. · Zbl 1435.15019
[2] Bogachev, V. I., Measure Theory, Springer, Berlin, 2007. · Zbl 1120.28001
[3] Choi, M.-D., Lam, T. Y., and Reznick, B., Real zeros of positive semidefinite forms. I, Math. Z., 171 (1980), pp. 1-26. · Zbl 0415.10018
[4] Choquet, G., Deux exemples classiques de représentation intégrale, Enseign. Math., 15 (1969), pp. 63-75. · Zbl 0175.42202
[5] di Dio, P. J. and Schmüdgen, K., The multidimensional truncated moment problem: The moment cone, J. Math. Anal. Appl., 511 (2022), 126066. · Zbl 1543.47037
[6] Faraut, J. and Korányi, A., Analysis on Symmetric Cones, Oxford University Press, Oxford, UK, 1995. · Zbl 0841.43002
[7] Güler, O., Barrier functions in interior point methods, Math. Oper. Res., 21 (1996), pp. 860-885. · Zbl 0867.90090
[8] Iliman, S., Nonnegative Polynomials and Sums of Squares: Boundary Structure, Symmetries and Sparsity, Ph.D. thesis, Johann Wolfgang Goethe-Universität, 2014.
[9] Kozhasov, Kh. and Lasserre, J. B., Nonnegative forms with sublevel sets of minimal volume, Math. Program., 193 (2022), pp. 485-498. · Zbl 1502.90128
[10] Kozhasov, Kh., Michalek, M., and Sturmfels, B., Positivity certificates via integral representations, in Facets of Algebraic Geometry, Vol. II, , Cambridge University Press, Cambridge, UK, 2022, pp. 84-114. · Zbl 1492.14107
[11] Kozhasov, Kh. and Tonelli-Cueto, J., Probabilistic Bounds on Best Rank-One Approximation Ratio, arXiv:2201.02191, 2022.
[12] Lasserre, J. B., Level sets and non Gaussian integrals of positively homogeneous functions, Int. Game Theory Rev., 17 (2015), 1540001. · Zbl 1342.90133
[13] Lasserre, J. B., Convex optimization and parsimony of \(L_p\)-balls representation, SIAM J. Optim., 26 (2016), pp. 247-273, doi:10.1137/140983082. · Zbl 1333.90089
[14] Michałek, M., Sturmfels, B., Uhler, C., and Zwiernik, P., Exponential varieties, Proc. Lond. Math. Soc. (3), 112 (2016), pp. 27-56. · Zbl 1345.14048
[15] Morozov, A. Yu. and Shakirov, Sh. R., New and old results in resultant theory, Theoret. Math. Phys., 163 (2010), pp. 587-617. · Zbl 1254.15011
[16] Nesterov, Y. and Nemirovskii, A., Interior-Point Polynomial Algorithms in Convex Programming, , SIAM, Philadelphia, 1994, doi:10.1137/1.9781611970791. · Zbl 0824.90112
[17] Nie, J., Discriminants and nonnegative polynomials, J. Symbolic Comput., 47 (2012), pp. 167-191, doi:10.1016/j.jsc.2011.08.023. · Zbl 1245.14061
[18] Reznick, B., Some concrete aspects of Hilbert’s 17th problem, in Real Algebraic Geometry and Ordered Structures (Baton Rouge, LA, 1996), , AMS, Providence, RI, 1996, pp. 251-272. · Zbl 0972.11021
[19] Richter, H., Parameterfreie Abschätzung und Realisierung von Erwartungswerten, Blätter der DGVFM, 3 (1957), pp. 147-162. · Zbl 0080.12603
[20] Robinson, R. M., Some definite polynomials which are not sums of squares of real polynomials, in Selected Questions of Algebra and Logic, , 1973, pp. 264-282. · Zbl 0277.10019
[21] Schmüdgen, K., The Moment Problem, , Springer, Cham, 2017. · Zbl 1383.44004
[22] Scott, A. D. and Sokal, A. D., Complete monotonicity for inverse powers of some combinatorially defined polynomials, Acta Math., 213 (2014), pp. 323-392. · Zbl 1304.05074
[23] Shafarevich, I. R., Basic Algebraic Geometry 1, 3rd ed., Springer, Berlin, Heidelberg, 2013. · Zbl 1273.14004
[24] Sinn, R., Algebraic boundaries of convex semi-algebraic sets, Res. Math. Sci., 2 (2015), 3. · Zbl 1381.52007
[25] Widder, D. V., Laplace Transform, Princeton University Press, Princeton, NJ, 1946. · Zbl 1024.20502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.