×

Ten points on a cubic. (English) Zbl 1532.14063

This well-written expository paper discusses geometric and combinatorial properties of cubic curves, especially configurations of points on such curves. The authors combine this with fascinating historical asides on Blaise Pascal and other mathematical researchers in this topic. The main result they establish is a straightedge construction that checks whether 10 general points lie on a cubic.
Theorem: Given ten points in the plane, there exists a straightedge construction that produces three points such that the original ten points lie on a cubic curve if and only if the three points are collinear.
Closely related is the following result due to Pascal:
Theorem (Pascal). If six distinct points A, B, C, a, b, and c lie on a conic, then the lines Ab, Bc, and Ca meet the lines aB, bC, and cA in three new points and these new points are collinear.
The line through the three new points is called the Pascal line. The authors point out the following amazing but true
Fact: There are \(6! = 720\) ways to reorder the points, but these give rise to only \(60\) different Pascal lines. The authors delve into this arrangement of \(60\) lines, known as Pascal’s Hexagrammum Mysticum, and discuss some of its amazing combinatorial properties.
The paper closes with a series of eight problems and four research problems. For example, one such problem is:
Problem: Given five points on a conic, use Pascal’s theorem to show that you can construct the tangent line to the conic at each of the five points.
One such research problem is:
Research Problem: Given 9 points sitting on a unique cubic curve and a subset consisting of five of these points sitting on a unique conic, construct the sixth point of intersection of the cubic with the conic using a straightedge.
For further details, the reader is referred to the paper itself.

MSC:

14H50 Plane and space curves
51A20 Configuration theorems in linear incidence geometry

References:

[1] Apel, S. (2016). Cayley factorization and the area principle. Discrete Comput. Geom. 55(1): 203-227. DOI: . · Zbl 1335.68299
[2] Bashelor, A., Ksir, A., Traves, W. (2008). Enumerative algebraic geometry of conics. Amer. Math. Monthly. 115(8): 701-728. DOI: . · Zbl 1229.14038
[3] Bézout, É. (2006). General Theory of Algebraic Equations. Translated from the 1779 French original. (Feron, E. trans.). Princeton, NJ: Princeton Univ. Press. · Zbl 1129.12001
[4] Bosma, W., Cannon, J., Playoust, C. (1997). The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4): 235-265. DOI: . · Zbl 0898.68039
[5] Burckhardt, J. (1970). Jakob Steiner. In: Gillispie, C.C., ed. The Dictionary of Scientific Biography, Vol. 13. New York, NY: Charles Scribner’s Sons, pp. 12-22.
[6] Cayley, A. (1862). On the construction of the ninth point of intersection of the cubics which pass through eight given points. Q. J. Pure Appl. Math. 5: 222-233.
[7] Chasles, M. (1853). Construction de la courbe du troisiéme ordre par neuf points.
[8] Conway, J., Ryba, A. (2012). The Pascal mysticum demystified. Math. Intel. 34(3): 4-8. DOI: . · Zbl 1262.51003
[9] Conway, J., Ryba, A. (2013). Extending the Pascal mysticum. Math. Intel.35(2): 44-51. DOI: . · Zbl 1281.51002
[10] Coxeter, H., Greitzer, S. (1967). Geometry revisited. New York, NY: Random House. · Zbl 0166.16402
[11] Eisenbud, D., Green, M., Harris, J. (1996). Cayley-Bacharach theorems and conjectures. Bull. Amer. Math. Soc. (N.S.). 33(3): 295-324. DOI: . · Zbl 0871.14024
[12] Fried, M. (2010). Mathematics as the Science of Patterns - Jacob Steiner and the Power of a Point. maa.org/press/periodicals/convergence/mathematics-as-the-science-of-patterns-jacob-steiner-and-the-power-of-a-point
[13] Gurobi, Version 10.0. (2022). Beaverton, OR: Gurobi Optimization, LLC.
[14] Hadamard, J. (1996). The Mathematician’s Mind: The Psychology of Invention in the Mathematical Field. Princeton, NJ: Princeton Univ. Press.
[15] Hart, A. (1851). Construction by the ruler alone to determine the ninth point of intersection of two curves of the third degree. Cambridge Dublin Math. J. 6: 181-182.
[16] Hohenwarter, M., Borcherds, M., Ancsin, G., Bencze, B., Blossier, M., Éliás, J., Frank, K., Gál, L., Hofstätter, A., Jordan, F., et al. GeoGebra 5.0.507.0, http://www.geogebra.org, 2018.
[17] Linton, A., Linton, E. (1921). Pascal’s mystic hexagram; its history and Graphical Representation. PhD dissertation. University of Pennsylvania, Philadelphia, PA.
[18] MATLAB, Version 9.6.0 (2019). Natick, MA: MathWorks, Inc.
[19] Painlevé, P. (1973). Oeuvres de Paul Painlevé. Volume 1. Paris, FR: Centre National de la Recherche Scientifique. · Zbl 1092.01510
[20] Reiss, M. (1870). Analytisch-geometrische studien. Math. Ann.2: 385-426. DOI: . · JFM 02.0471.02
[21] Ren, Q., Richter-Gebert, J., Sturmfels, B. (2015). Cayley-Bacharach formulas. Amer. Math. Monthly. 122(9): 845-854. · Zbl 1346.14083
[22] Richter-Gebert, J. (2011). Perspectives on Projective Geometry. Heidelberg, DE: Springer. · Zbl 1214.51001
[23] Steiner, J. (1881). Einige geometrische Betrachtungen. In: Weierstrass, K. ed. Jacob Steiner Gesammelte Werk, Vol. 1. Cambridge, UK: Cambridge Univ. Press, pp. 17-76.
[24] Sturmfels, B. (2008). Algorithms in Invariant Theory, 2nd ed. Vienna, AU: SpringerWienNewYork. · Zbl 1154.13003
[25] Traves, W. (2013). From Pascal’s theorem to d-constructible curves. Amer. Math. Monthly. 120(10): 901-915. · Zbl 1306.14015
[26] Wantzel, L. (1837). Recherches sur les moyens de reconnaître si un problème de géométrie peut se résoudre avec la règle et le compas. J. Math. Pures Appl. 2: 366-372.
[27] Weddle, T. (1851). On the construction of the ninth point of intersection of two curves of the third degree when the other eight points are given. Cambridge Dublin Math. J. 6: 83-86.
[28] Zeitz, P. (2007). The Art and Craft of Problem Solving, 2nd ed. Hoboken, NJ: Wiley.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.