×

Quantization ambiguities and the robustness of effective descriptions of primordial perturbations in hybrid loop quantum cosmology. (English) Zbl 1531.83034

Summary: We study the imprint that certain quantization ambiguities may leave in effective regimes of the hybrid loop quantum description of cosmological perturbations. More specifically, in the case of scalar perturbations we investigate how to reconstruct the Mukhanov-Sasaki field in the effective regime of loop quantum cosmology, taking as starting point for the quantization a canonical formulation in terms of other perturbative gauge invariants that possess different dynamics. This formulation of the quantum theory, in terms of variables other than the Mukhanov-Sasaki ones, is crucial to arrive at a quantum Hamiltonian with a good behavior, eluding the problems with ill defined Hamiltonian operators typical of quantum field theories. In the reconstruction of the Mukhanov-Sasaki field, we ask that the effective Mukhanov-Sasaki equations adopt a similar form and display the same Hamiltonian structure as the classical ones, a property that has been widely assumed in loop quantum cosmology studies over the last decade. This condition actually restricts the freedom inherent to certain quantization ambiguities. Once these ambiguities are removed, the reconstruction of the Mukhanov-Sasaki field naturally identifies a set of positive-frequency solutions to the effective equations, and hence a choice of initial conditions for the perturbations. Our analysis constitutes an important and necessary test of the robustness of standard effective descriptions in loop quantum cosmology, along with their observational predictions on the primordial power spectrum, taking into account that they should be the consequence of a more fundamental quantum theory with a well-defined Hamiltonian, in the spirit of Dirac’s long-standing ideas.

MSC:

83C45 Quantization of the gravitational field
83F05 Relativistic cosmology
81V17 Gravitational interaction in quantum theory

References:

[1] Burgess, C. P.; Sola, J., An Ode to effective Lagrangians, Radiative Corrections: Application of Quantum Field Theory to Phenomenology, 471-488 (1999), Singapore: World Scientific, Singapore
[2] Weinberg, S., Effective field theory, past and future, p 001 (2009)
[3] Penco, R., An introduction to effective field theories (2020)
[4] Donoghue, J. F., The quantum theory of general relativity at low energies, Helv. Phys. Acta, 69, 269 (1996) · Zbl 0859.53054 · doi:10.5169/seals-116936
[5] Burgess, C. P., Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Relativ., 7, 5 (2004) · Zbl 1070.83009 · doi:10.12942/lrr-2004-5
[6] Ashtekar, A.; Bojowald, M.; Lewandowski, J., Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys., 7, 233 (2003) · doi:10.4310/atmp.2003.v7.n2.a2
[7] Bojowald, M., Loop quantum cosmology, Living Rev. Relativ., 11, 4 (2008) · Zbl 1316.83035 · doi:10.12942/lrr-2008-4
[8] Mena Marugán, G. A., A brief introduction to loop quantum cosmology, AIP Conf. Proc., 1130, 89 (2009) · Zbl 1181.83240 · doi:10.1063/1.3146242
[9] Ashtekar, A.; Singh, P., Loop quantum cosmology: a status report, Class. Quantum Grav., 28 (2011) · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[10] Thiemann, T., Modern Canonical Quantum General Relativity (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1129.83004
[11] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang, Phys. Rev. Lett., 96 (2006) · Zbl 1153.83417 · doi:10.1103/physrevlett.96.141301
[12] Taveras, V., LQC corrections to the Friedmann equations for a universe with a free scalar field, Phys. Rev. D, 78 (2008) · doi:10.1103/physrevd.78.064072
[13] Martín-Benito, M.; Mena Marugán, G. A.; Olmedo, J., Further improvements in the understanding of isotropic loop quantum cosmology, Phys. Rev. D, 80 (2009) · doi:10.1103/physrevd.80.104015
[14] Bojowald, M.; Calcagni, G.; Tsujikawa, S., Observational constraints on loop quantum cosmology, Phys. Rev. Lett., 107 (2011) · doi:10.1103/physrevlett.107.211302
[15] Cailleteau, T.; Linsefors, L.; Barrau, A., Anomaly-free perturbations with inverse-volume and holonomy corrections in loop quantum cosmology, Class. Quantum Grav., 31 (2014) · Zbl 1295.83020 · doi:10.1088/0264-9381/31/12/125011
[16] Barrau, A.; Bojowald, M.; Calcagni, G.; Grain, J.; Kagan, M., Anomaly-free cosmological perturbations in effective canonical quantum gravity, J. Cosmol. Astropart. Phys. (2015) · doi:10.1088/1475-7516/2015/05/051
[17] Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J., Hybrid quantization of an inflationary universe, Phys. Rev. D, 86 (2012) · doi:10.1103/physrevd.86.024003
[18] Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J., Hybrid quantization of an inflationary model: the flat case, Phys. Rev. D, 88 (2013) · doi:10.1103/physrevd.88.044013
[19] Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J., Effective dynamics of scalar perturbations in a flat Friedmann-Robertson-Walker spacetime in loop quantum cosmology, Phys. Rev. D, 89 (2014) · doi:10.1103/physrevd.89.044041
[20] Castelló Gomar, L.; Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J., Cosmological perturbations in hybrid loop quantum cosmology: Mukhanov-Sasaki variables, Phys. Rev. D, 90 (2014) · doi:10.1103/physrevd.90.064015
[21] Castelló Gomar, L.; Martín-Benito, M.; Mena Marugán, G. A., Gauge-invariant perturbations in hybrid quantum cosmology, J. Cosmol. Astropart. Phys. (2015) · doi:10.1088/1475-7516/2015/06/045
[22] Benítez Martínez, F.; Olmedo, J., Primordial tensor modes of the early universe, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.124008
[23] Castelló Gomar, L.; Mena Marugán, G. A.; Martín de Blas, D.; Olmedo, J., Hybrid loop quantum cosmology and predictions for the cosmic microwave background, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.103528
[24] Elizaga Navascués, B.; Martín de Blas, D.; Mena Marugán, G. A., The vacuum state of primordial fluctuations in hybrid loop quantum cosmology, Universe, 4, 98 (2018) · doi:10.3390/universe4100098
[25] Agullo, I.; Ashtekar, A.; Nelson, W., Quantum gravity extension of the inflationary scenario, Phys. Rev. Lett., 109 (2012) · doi:10.1103/physrevlett.109.251301
[26] Agullo, I.; Ashtekar, A.; Nelson, W., Extension of the quantum theory of cosmological perturbations to the Planck era, Phys. Rev. D, 87 (2013) · doi:10.1103/physrevd.87.043507
[27] Agullo, I.; Ashtekar, A.; Nelson, W., The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations, Class. Quantum Grav., 30 (2013) · Zbl 1267.83031 · doi:10.1088/0264-9381/30/8/085014
[28] Agullo, I.; Morris, N. A., Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.124040
[29] Ashtekar, A.; Gupt, B.; Jeong, D.; Sreenath, V., Alleviating the tension in CMB using Planck-scale physics, Phys. Rev. Lett., 125 (2020) · doi:10.1103/physrevlett.125.051302
[30] Li, B-F; Singh, P.; Wang, A., Primordial power spectrum from the dressed metric approach in loop cosmologies, Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.086004
[31] Li, B-F; Olmedo, J.; Singh, P.; Wang, A., Primordial scalar power spectrum from the hybrid approach in loop cosmologies, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.126025
[32] Wilson-Ewing, E., Testing loop quantum cosmology, C. R. Phys., 18, 207 (2017) · doi:10.1016/j.crhy.2017.02.004
[33] Gerhardt, F.; Oriti, D.; Wilson-Ewing, E., The separate universe framework in group field theory condensate cosmology, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.066011
[34] Alesci, E.; Barrau, A.; Botta, G.; Martineau, K.; Stagno, G., Phenomenology of quantum reduced loop gravity in the isotropic cosmological sector, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.106022
[35] Olmedo, J.; Alesci, E., Power spectrum of primordial perturbations for an emergent universe in quantum reduced loop gravity, J. Cosmol. Astropart. Phys. (2019) · Zbl 1542.83007 · doi:10.1088/1475-7516/2019/04/030
[36] Bolliet, B.; Grain, J.; Stahl, C.; Linsefors, L.; Barrau, A., Comparison of primordial tensor power spectra from the deformed algebra and dressed metric approaches in loop quantum cosmology, Phys. Rev. D, 91 (2015) · doi:10.1103/physrevd.91.084035
[37] Schander, S.; Barrau, A.; Bolliet, B.; Grain, J.; Linsefors, L.; Mielczarek, J., Primordial scalar power spectrum from the Euclidean big bounce, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.023531
[38] Elizaga Navascués, B.; Mena Marugán, G. A., Hybrid loop quantum cosmology: an overview, Front. Astron. Space Sci., 8 (2021) · Zbl 1479.83252 · doi:10.3389/fspas.2021.624824
[39] Ade, P. A R.; Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[40] Ade, P. A R.; Planck Collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20 (2016) · doi:10.1051/0004-6361/201525898
[41] Akrami, Y.; Planck Collaboration, Planck 2018 results. VII. Isotropy and statistics of the CMB, Astron. Astrophys., 641, A7 (2020) · doi:10.1051/0004-6361/201935201
[42] Mukhanov, V.; Mukhanov, V., Quantum theory of gauge-invariant cosmological perturbations, Zh. Eksp. Teor. Fiz.. Sov. Phys. JETP, 67, 1297 (1988)
[43] Sasaki, M., Gauge-invariant scalar perturbations in the new inflationary universe, Prog. Theor. Phys., 70, 394 (1983) · doi:10.1143/ptp.70.394
[44] Dirac, P. A M., Lectures on Quantum Mechanics (1964), New York: Belfer Graduate School of Science, Yeshiva University, New York · Zbl 0141.44603
[45] Martín-Benito, M.; Garay, L. J.; Mena Marugán, G. A., Hybrid quantum Gowdy cosmology: combining loop and Fock quantizations, Phys. Rev. D, 78 (2008) · doi:10.1103/physrevd.78.083516
[46] Mena Marugán, G. A.; Martín-benito, M., Hybrid quantum cosmology: combining loop and Fock quantizations, Int. J. Mod. Phys. A, 24, 2820 (2009) · Zbl 1168.83314 · doi:10.1142/s0217751x09046187
[47] Elizaga Navascués, B.; Mena Marugán, G. A.; Prado Loy, S., Backreaction of fermionic perturbations in the Hamiltonian of hybrid loop quantum cosmology, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.063535
[48] Elizaga Navascués, B.; Mena Marugán, G. A.; Thiemann, T., Hamiltonian diagonalization in hybrid quantum cosmology, Class. Quantum Grav., 36, 18 (2019) · Zbl 1478.83245 · doi:10.1088/1361-6382/ab32af
[49] Elizaga Navascués, B.; Martín de Blas, D.; Mena Marugán, G. A., Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.043523
[50] Castelló Gomar, L.; Cortez, J.; Martín de Blas, D.; Mena Marugán, G. A.; Velhinho, J. M., Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes, J. Cosmol. Astropart. Phys. (2012) · doi:10.1088/1475-7516/2012/11/001
[51] Cortez, J.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M., A uniqueness criterion for the Fock quantization of scalar fields with time-dependent mass, Class. Quantum Grav., 28 (2011) · Zbl 1223.83022 · doi:10.1088/0264-9381/28/17/172001
[52] Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M., Unique Fock quantization of scalar cosmological perturbations, Phys. Rev. D, 85 (2012) · doi:10.1103/physrevd.85.103525
[53] Martín de Blas, D.; Olmedo, J., Primordial power spectra for scalar perturbations in loop quantum cosmology, J. Cosmol. Astropart. Phys. (2016) · doi:10.1088/1475-7516/2016/06/029
[54] Ashtekar, A.; Gupt, B., Initial conditions for cosmological perturbations, Class. Quantum Grav., 34 (2017) · Zbl 1358.83007 · doi:10.1088/1361-6382/aa52d4
[55] Ashtekar, A.; Gupt, B., Quantum gravity in the sky: interplay between fundamental theory and observations, Class. Quantum Grav., 34 (2017) · doi:10.1088/1361-6382/34/1/014002
[56] Martín-Benito, M.; Neves, R. B.; Olmedo, J., States of low energy in bouncing inflationary scenarios in loop quantum cosmology, Phys. Rev. D, 103 (2021) · doi:10.1103/physrevd.103.123524
[57] Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1095.83002
[58] Langlois, D., Inflation and Cosmological Perturbations, vol 800, p 1 (2010), Berlin: Springer, Berlin · Zbl 1186.83008 · doi:10.1007/978-3-642-10598-2
[59] Elizaga Navascués, B.; Mena Marugán, G. A.; Prado, S., Non-oscillating power spectra in loop quantum cosmology, Class. Quantum Grav., 38 (2021) · Zbl 1479.83252 · doi:10.1088/1361-6382/abc6bb
[60] Dapor, A.; Liegener, K., Cosmological effective Hamiltonian from full loop quantum gravity dynamics, Phys. Lett. B, 785, 506 (2018) · Zbl 1398.81287 · doi:10.1016/j.physletb.2018.09.005
[61] Assanioussi, M.; Dapor, A.; Liegener, K.; Pawłowski, T., Emergent de Sitter epoch of the loop quantum cosmos: a detailed analysis, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.084003
[62] García-Quismondo, A.; Mena Marugán, G. A., The Martín-Benito-Mena Marugán-Olmedo prescription for the Dapor-Liegener model of loop quantum cosmology, Phys. Rev. D, 99 (2019) · doi:10.1103/physrevd.99.083505
[63] Castelló Gomar, L.; García-Quismondo, A.; Mena Marugán, G. A., Primordial perturbations in the Dapor-Liegener model of hybrid loop quantum cosmology, Phys. Rev. D, 102 (2020) · Zbl 1479.83255 · doi:10.1103/physrevd.102.083524
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.