×

A unification of the coding theory and OAQEC perspectives on hybrid codes. (English) Zbl 1531.81071

Summary: There is an advantage in simultaneously transmitting both classical and quantum information over a quantum channel compared to sending independent transmissions. The successful implementation of simultaneous transmissions of quantum and classical information will require the development of hybrid quantum-classical error-correcting codes, known as hybrid codes. The characterization of hybrid codes has been performed from a coding theory perspective and an operator algebra quantum error correction (OAQEC) perspective. First, we demonstrate that these two perspectives are equivalent and that the coding theory characterization is a specific case of the OAQEC model. Second, we include a generalization of the quantum Hamming bound for hybrid error-correcting codes. We discover a necessary condition for developing non-trivial hybrid codes – they must be degenerate. Finally, we construct an example of a non-trivial degenerate 4-qubit hybrid code.

MSC:

81P70 Quantum coding (general)
94A60 Cryptography
65B05 Extrapolation to the limit, deferred corrections
81P73 Computational stability and error-correcting codes for quantum computation and communication processing
81P47 Quantum channels, fidelity
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)

References:

[1] Devetak, I.; Shor, PW, The capacity of a quantum channel for simultaneous transmission of classical and quantum information, Commun. Math. Phys., 256, 287 (2005) · Zbl 1068.81010 · doi:10.1007/s00220-005-1317-6
[2] Hsieh, M-H; Wilde, MM, Entanglement-assisted communication of classical and quantum information, IEEE Trans. Inf Theory., 56, 4682 (2010) · Zbl 1366.81097 · doi:10.1109/TIT.2010.2053903
[3] Hsieh, M-H; Wilde, MM, Trading classical communication, quantum communication, and entanglement in quantum shannon theory, IEEE Trans. Inf. Theory, 56, 4705 (2010) · Zbl 1366.81098 · doi:10.1109/TIT.2010.2054532
[4] Kremsky, I.; Hsieh, M-H; Brun, TA, Classical enhancement of quantum-error-correcting codes, Phys. Rev. A, 78 (2008) · doi:10.1103/PhysRevA.78.012341
[5] Nemec, A.S.: Hybrid and Nonadditive Quantum Codes, Ph.D. thesis (2022)
[6] Nemec, A., Klappenecker, A.: Hybrid codes, In: IEEE International Symposium on Information Theory (ISIT), pp. 796-800 (2018)
[7] Nemec, A.; Klappenecker, A., Nonbinary error-detecting hybrid codes, Am. J. Sci. & Eng., 1, 1 (2020) · doi:10.15864/ajse.1201
[8] Nemec, A.; Klappenecker, A., Infinite families of quantum-classical hybrid codes, IEEE Trans. Inf. Theory, 67, 2847 (2021) · Zbl 1473.94160 · doi:10.1109/TIT.2021.3051037
[9] Grassl, M., Lu, S., Zeng, B.: Codes for simultaneous transmission of quantum and classical information, in Information Theory (ISIT), IEEE Int. Symp. pp. 1718-1722 (2017)
[10] Bény, C., Kempf, A., Kribs, D.W.: Quantum error correction of observables, Physical Review A 76, 042303 (2007) · Zbl 1216.81055
[11] Gottesman, D., Class of quantum error-correcting codes saturating the quantum hamming bound, Phys. Rev. A., 54, 1862 (1996) · doi:10.1103/PhysRevA.54.1862
[12] Knill, E.; Laflamme, R., Theory of quantum error-correcting codes, Phys. Rev. A,, 55, 900 (1997) · doi:10.1103/PhysRevA.55.900
[13] Kribs, D., Laflamme, R., Poulin, D.: Unified and generalized approach to quantum error correction. Phys. Rev. lett, 94, 180501 (2005) · Zbl 1077.47059
[14] Shor, PW, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52, R2493 (1995) · doi:10.1103/PhysRevA.52.R2493
[15] Steane, AM, Simple quantum error-correcting codes, Phys. Rev. A, 54, 4741 (1996) · Zbl 07918814 · doi:10.1103/PhysRevA.54.4741
[16] Bennett, CH; DiVincenzo, DP; Smolin, JA; Wootters, WK, Mixed-state entanglement and quantum error correction, Phys. Rev. A, 54, 3824 (1996) · Zbl 1371.81041 · doi:10.1103/PhysRevA.54.3824
[17] Palma, G.M., Suominen, K.-A., Ekert, A.: Quantum computers and dissipation, Proceedings of the Royal Society of London. Series A: Math. Phys. Eng. Sci. 452, 567 (1996) · Zbl 0870.68066
[18] Duan, L-M; Guo, G-C, Preserving coherence in quantum computation by pairing quantum bits, Phys. Rev. Lett., 79, 1953 (1997) · doi:10.1103/PhysRevLett.79.1953
[19] Zanardi, P.; Rasetti, M., Noiseless quantum codes, Phys. Rev. Lett., 79, 3306 (1997) · doi:10.1103/PhysRevLett.79.3306
[20] Lidar, DA; Chuang, IL; Whaley, KB, Decoherence-free subspaces for quantum computation, Phys. Rev. Lett., 81, 2594 (1998) · doi:10.1103/PhysRevLett.81.2594
[21] Hamming, RW, Error detecting and error correcting codes, The Bell Syst. Tech. J., 29, 147 (1950) · Zbl 1402.94084 · doi:10.1002/j.1538-7305.1950.tb00463.x
[22] Cory, DG; Price, M.; Maas, W.; Knill, E.; Laflamme, R.; Zurek, WH; Havel, TF; Somaroo, SS, Experimental quantum error correction, Phys. Rev. Lett., 81, 2152 (1998) · doi:10.1103/PhysRevLett.81.2152
[23] Leung, D.; Vandersypen, L.; Zhou, X.; Sherwood, M.; Yannoni, C.; Kubinec, M.; Chuang, I., Experimental realization of a two-bit phase damping quantum code, Phys. Rev. A, 60, 1924 (1999) · doi:10.1103/PhysRevA.60.1924
[24] Knill, E.; Laflamme, R.; Martinez, R.; Negrevergne, C., Benchmarking quantum computers: the five-qubit error correcting code, Phys. Rev. Lett., 86, 5811 (2001) · doi:10.1103/PhysRevLett.86.5811
[25] Majidy, S.-S., Katiyar, H., Anikeeva, G., Halliwell, J., Laflamme, R.: Exploration of an augmented set of leggett-garg inequalities using a noninvasive continuous-in-time velocity measurement. Phys. Rev. A 100, 042325 (2019)
[26] Majidy, S.-S.: Violation of an augmented set of Leggett-Garg inequalities and the implementation of a continuous in time velocity measurement, Master’s thesis, University of Waterloo (2019)
[27] Majidy, S., Halliwell, J.J., Laflamme, R.: Detecting violations of macrorealism when the original leggett-garg inequalities are satisfied. Phys. Rev. A 103, 062212 (2021)
[28] Gilbert, EN, A comparison of signalling alphabets, The Bell Syst. Tech. J., 31, 504 (1952) · doi:10.1002/j.1538-7305.1952.tb01393.x
[29] Varshamov, RR, Estimate of the number of signals in error correcting codes, Docklady Akad, Nauk, SSSR, 117, 739 (1957) · Zbl 0081.36905
[30] Penington, G., Entanglement wedge reconstruction and the information paradox, J. High Energy Phys., 2020, 1 (2020) · Zbl 1454.81039 · doi:10.1007/JHEP09(2020)002
[31] Kibe, T.; Mandayam, P.; Mukhopadhyay, A., Holographic spacetime, black holes and quantum error correcting codes: a review, Eur. Phys. J. C, 82, 463 (2022) · doi:10.1140/epjc/s10052-022-10382-1
[32] Hayden, P.; Penington, G., Learning the alpha-bits of black holes, J. High Energy Phys., 2019, 1 (2019) · Zbl 1431.83095 · doi:10.1007/JHEP12(2019)007
[33] Kim, I.; Tang, E.; Preskill, J., The ghost in the radiation: Robust encodings of the black hole interior, J. High Energy Phys., 2020, 1 (2020) · Zbl 1437.83063 · doi:10.1007/JHEP06(2020)031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.