×

Improvement of quantum walks search Algorithm in single-marked vertex graph. (English) Zbl 1531.81061

Summary: Quantum walks are powerful tools for building quantum search algorithms. However, these success probabilities are far below 1. Amplitude amplification is usually used to amplify success probability, but the soufflé problem follows. Only stop at the right step can we achieve a maximum success probability. Otherwise, as the number of steps increases, the success probability may decrease, which will cause troubles in the practical application of the algorithm when the optimal number of steps is unknown. In this work, we define generalized interpolated quantum walks instead of amplitude amplification, which can not only improve the success probability but also avoid the soufflé problem. We choose a special case of generalized interpolated quantum walks and construct a series of new search algorithms based on phase estimation and quantum fast-forwarding, respectively. Especially, by combining our interpolated quantum walks with quantum fast-forwarding, we both reduce the time complexity of the search algorithm from \(\Theta((\varepsilon^{-1})\sqrt{\mathrm{HT}})\) to \((\Theta(\log(\varepsilon^{-1})\sqrt{\mathrm{HT}})\) and reduce the number of ancilla qubits required from \((\Theta(\log(\varepsilon^{-1}) + \log\sqrt{\mathrm{HT}})\) to \((\Theta(\log\log(\varepsilon^{-1}) + \log\sqrt{\mathrm{HT}})\), where \(\varepsilon\) denotes the precision and HT denotes the classical hitting time. In addition, we show that our generalized interpolated quantum walks can improve the construction of quantum stationary states corresponding to reversible Markov chains. Finally, we give an application to construct a slowly evolving Markov chain sequence by applying generalized interpolated quantum walks, which is the necessary premise in adiabatic stationary state preparation.
{© 2023 The Author(s). Published by IOP Publishing Ltd}

MSC:

81P68 Quantum computation
05C81 Random walks on graphs
68P10 Searching and sorting
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
03C40 Interpolation, preservation, definability
81P15 Quantum measurement theory, state operations, state preparations
70H11 Adiabatic invariants for problems in Hamiltonian and Lagrangian mechanics

References:

[1] Ambainis, A., Quantum walk algorithms for element distinctness, SIAM J. Comput., 37, 22-31 (2004) · Zbl 1134.81010 · doi:10.1137/S0097539705447311
[2] Magniez, F.; Santha, M.; Szegedy, M., Quantum algorithms for the triangle problem, SIAM J. Comput., 37, 413-24 (2007) · Zbl 1166.68032 · doi:10.1137/050643684
[3] Buhrman, H.; Spalek, R., Quantum verification of matrix products, pp 880-9 (2006) · Zbl 1192.81056
[4] Shenvi, N.; Kempe, J.; Whaley, K. B., Quantum random-walk search algorithm, Phys. Rev. A, 67 (2003) · doi:10.1103/PhysRevA.67.052307
[5] Wocjan, P.; Abeyesinghe, A., Speedup via quantum sampling, Phys. Rev. A, 78 (2008) · doi:10.1103/PhysRevA.78.042336
[6] Sheng, Y.; Zhang, Z. Z., Low-mean hitting time for random walks on heterogeneous networks, IEEE Trans. Inf. Theory, 65, 6898-910 (2019) · Zbl 1433.05289 · doi:10.1109/TIT.2019.2925610
[7] Shao, C.; Li, Y.; Li, H., Quantum algorithm design: techniques and applications, J. Syst. Sci. Complexity, 32, 375-452 (2019) · Zbl 1409.81033 · doi:10.1007/s11424-019-9008-0
[8] Szegedy, M., Quantum speed-up of Markov chain based algorithms, pp 32-41 (2004)
[9] Szegedy, M., Spectra of quantized walks and a \(####\) rule (2004)
[10] Yung, M.; Aspuru-Guzik, A., A quantum-quantum metropolis algorithm, Proc. Natl Acad. Sci., 109, 754-9 (2010) · doi:10.1073/pnas.1111758109
[11] Magniez, F.; Nayak, A.; Roland, J.; Santha, M., Search via quantum walk, SIAM J. Comput., 40, 142-64 (2011) · Zbl 1223.05289 · doi:10.1137/090745854
[12] Tulsi, A., Faster quantum-walk algorithm for the two-dimensional spatial search, Phys. Rev. A, 78 (2008) · Zbl 1255.81118 · doi:10.1103/PhysRevA.78.012310
[13] Magniez, F.; Nayak, A.; Richter, P. C.; Santha, M., On the hitting times of quantum versus random walks, Algorithmica, 63, 91-116 (2012) · Zbl 1236.68072 · doi:10.1007/s00453-011-9521-6
[14] Krovi, H.; Magniez, F.; Ozols, M.; Roland, J., Quantum walks can find a marked element on any graph, Algorithmica, 74, 851-907 (2016) · Zbl 1336.68083 · doi:10.1007/s00453-015-9979-8
[15] Ambainis, A.; Ambainis, A.; Gilyén, A.; Jeffery, S.; Kokainis, M., Quadratic speedup for finding marked vertices by quantum walks, pp 412-24 (2020) · Zbl 07298258
[16] Brassard, G., Searching a quantum phone book, Science, 275, 627-8 (1997) · doi:10.1126/science.275.5300.627
[17] Apers, S.; Sarlette, A., Quantum fast-forwarding: Markov chains and graph property testing, Quantum Inf. Comput., 19, 181-213 (2018) · doi:10.26421/QIC19.3-4-1
[18] Page, L., The pagerank citation ranking: bringing order to the web (1999)
[19] Dunjko, V.; Briegel, H. J., Quantum mixing of Markov chains for special distributions, New J. Phys., 17 (2015) · Zbl 1452.82040 · doi:10.1088/1367-2630/17/7/073004
[20] Chakraborty, S.; Luh, K.; Roland, J., Analog quantum algorithms for the mixing of Markov chains, Phys. Rev. A, 102 (2020) · doi:10.1103/PhysRevA.102.022423
[21] Richter, P. C., Quantum speedup of classical mixing processes, Phys. Rev. A, 76 (2007) · doi:10.1103/PhysRevA.76.042306
[22] Li, X.; Shang, Y., Faster quantum mixing of Markov chains in non-regular graph with fewer qubits, Phys. Rev. A, 107 (2022) · doi:10.1103/PhysRevA.107.022432
[23] Aldous, D., Some inequalities for reversible Markov chains, J. London Math. Soc., s2-25, 564-76 (1982) · Zbl 0489.60077 · doi:10.1112/jlms/s2-25.3.564
[24] Hawkins, J., Perron-Frobenius theorem and some applications, Ergodic Dynamics: From Basic Theory to Applications, vol 289, pp 107-23 (2021), Springer
[25] Krovi, H.; Ozols, M.; Roland, J., Adiabatic condition and the quantum hitting time of Markov chains, Phys. Rev. A, 82 (2010) · doi:10.1103/PhysRevA.82.022333
[26] Cleve, R.; Ekert, A.; Macchiavello, C.; Mosca, M., Quantum algorithms revisited, Proc. R. Soc. A, 454, 339-54 (1998) · Zbl 0915.68050 · doi:10.1098/rspa.1998.0164
[27] Aharonov, D.; Ta-Shma, A., Adiabatic quantum state generation and statistical zero knowledge, pp 20-29 (2003) · Zbl 1192.81048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.