×

Particle based large eddy simulation of vortex ripple dynamics using an Euler-Lagrange approach. (English) Zbl 1531.76069

Summary: A volume-filtered Large Eddy Simulation (LES) of oscillatory flow over a mobile rippled bed is conducted using an Euler-Lagrange approach. The modeling is done to complement the experimental work, which shows quasi-steady state ripples in a sand bed under oscillatory flow, as observed in unsteady marine flows over sedimentary beds. Simulations approximate the experimental configuration with a sinusoidal pressure gradient driven flow and a sinusoidally shaped rippled bed of particles. The LES equations, which are volume-filtered to account for the effect of the particles, are solved on an Eulerian grid, and the particles are tracked in a Lagrangian framework. A Discrete Particle Method (DPM) is used, where the particle collisions are handled by a soft-sphere model, and the liquid and solid phases are coupled through volume fraction and momentum exchange terms. Comparison of the numerical results to the experimental data show that the LES-DPM captures the mesoscale features of the system. The simulations reproduced the large scale shedding of vortices from the ripple crests observed in experiments. Likewise, the simulations exhibited quantitative agreement between the wall-normal flow statistics, and qualitative agreement in ripple shape evolution and sand particle entrainment behavior above the fluid-bed interface. The numerical data provide insight into the formation of shear layers and eddies within the flow field above and through the ripple and their influence on the particle transport and the dilation of the ripple mobile layer thickness during an oscillatory period. The resolution of flow structures within the particle bed in the LES-DPM simulations make the framework a unique tool for investigating ripple driven sediment transport and distribution of momentum over the ripple.

MSC:

76M28 Particle methods and lattice-gas methods
76T20 Suspensions
76F65 Direct numerical and large eddy simulation of turbulence
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Charru, F.; Andreotti, B.; Claudin, P., Sand ripples and dunes, Annu. Rev. Fluid Mech., 45, 469-493 (2013) · Zbl 1359.76299
[2] Fredsøe, J.; Andersen, K. H.; Sumer, B. M., Wave plus current over a ripple-covered bed, Coast. Eng., 38, 4, 177-221 (1999)
[3] Arolla, S. K.; Desjardins, O., Transport modeling of sedimenting particles in a turbulent pipe flow using Euler-Lagrange large eddy simulation, Int. J. Multiph. Flow., 75, 1-11 (2015)
[4] Gundogdu, M. Y.; Carpinlioglu, M. O., Present state of art on pulsatile flow theory: Part 1: Laminar and transitional flow regimes, JSME Int. J. Ser. B Fluids Therm. Eng., 42, 3, 384-397 (1999)
[5] Gundogdu, M. Y.; Carpinlioglu, M. O., Present state of art on pulsatile flow theory: Part 2: Turbulent flow regime, JSME Int. J. Ser. B Fluids Therm. Eng., 42, 3, 398-410 (1999)
[6] Akhavan, R.; Kamm, R.; Shapiro, A., An investigation of transition to turbulence in bounded oscillatory Stokes flows Part 2. Numerical simulations, J. Fluid Mech., 225, 423-444 (1991)
[7] Di Liberto, M.; Ciofalo, M., Numerical simulation of reciprocating turbulent flow in a plane channel, Phys. Fluids, 21, 9, Article 095106 pp. (2009) · Zbl 1183.76178
[8] Hino, M.; Kashiwayanagi, M.; Nakayama, A.; Hara, T., Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow, J. Fluid Mech., 131, 363-400 (1983)
[9] Scotti, A.; Piomelli, U., Numerical simulation of pulsating turbulent channel flow, Phys. Fluids, 13, 5, 1367-1384 (2001) · Zbl 1184.76489
[10] Vittori, G.; Verzicco, R., Direct simulation of transition in an oscillatory boundary layer, J. Fluid Mech., 371, 207-232 (1998) · Zbl 0918.76015
[11] Fornarelli, F.; Vittori, G., Oscillatory boundary layer close to a rough wall, Eur. J. Mech. B Fluids, 28, 2, 283-295 (2009) · Zbl 1156.76377
[12] Ghodke, C. D.; Apte, S. V., DNS study of particle-bed-turbulence interactions in an oscillatory wall-bounded flow, J. Fluid Mech., 792, 232-251 (2016) · Zbl 1381.76100
[13] Desjardins, O.; Blanquart, G.; Balarac, G.; Pitsch, H., High order conservative finite difference scheme for variable density low mach number turbulent flows, J. Comput. Phys., 227, 15, 7125-7159 (2008) · Zbl 1201.76139
[14] Drake, T. G.; Calantoni, J., Discrete particle model for sheet flow sediment transport in the nearshore, J. Geophys. Res.: Oceans, 106, C9, 19859-19868 (2001)
[15] Derksen, J. J., Simulations of granular bed erosion due to a mildly turbulent shear flow, J. Hydraul. Res., 53, 5, 622-632 (2015)
[16] Kidanemariam, A. G.; Uhlmann, M., Direct numerical simulation of pattern formation in subaqueous sediment, J. Fluid Mech., 750 (2014)
[17] González, C.; Richter, D. H.; Bolster, D.; Bateman, S.; Calantoni, J.; Escauriaza, C., Characterization of bedload intermittency near the threshold of motion using a Lagrangian sediment transport model, Environ. Fluid Mech., 17, 1, 111-137 (2017)
[18] Sun, R.; Xiao, H., CFD-DEM simulations of current-induced dune formation and morphological evolution, Adv. Water Resour., 92, 228-239 (2016)
[19] Capecelatro, J.; Desjardins, O., An Euler-Lagrange strategy for simulating particle-laden flows, J. Comput. Phys., 238, 1-31 (2013) · Zbl 1286.76142
[20] Cundall, P. A.; Strack, O. D., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65 (1979)
[21] Pepiot, P.; Desjardins, O., Numerical analysis of the dynamics of two-and three-dimensional fluidized bed reactors using an Euler-Lagrange approach, Powder Technol., 220, 104-121 (2012)
[22] Zhu, H.; Zhou, Z.; Yang, R.; Yu, A., Discrete particle simulation of particulate systems: theoretical developments, Chem. Eng. Sci., 62, 13, 3378-3396 (2007)
[23] Zhu, H.; Zhou, Z.; Yang, R.; Yu, A., Discrete particle simulation of particulate systems: A review of major applications and findings, Chem. Eng. Sci., 63, 23, 5728-5770 (2008)
[24] Deen, N.; Van Sint Annaland, M.; Van der Hoef, M.; Kuipers, J., Review of discrete particle modeling of fluidized beds, Chem. Eng. Sci., 62, 1, 28-44 (2007) · Zbl 1388.76241
[25] Capecelatro, J.; Desjardins, O., Eulerian-Lagrangian modeling of turbulent liquid-solid slurries in horizontal pipes, Int. J. Multiph. Flow., 55, 64-79 (2013)
[26] Schmeeckle, M. W., Numerical simulation of turbulence and sediment transport of medium sand, J. Geophys. Res.: Earth Surface, 119, 6, 1240-1262 (2014)
[27] Apte, S. V.; Patankar, N. A., A formulation for fully resolved simulation (FRS) of particle-turbulence interactions in two-phase flows, Int. J. Numer. Anal. Model, 5, 1-16 (2008) · Zbl 1259.76011
[28] Capecelatro, J.; Desjardins, O., An Euler-Lagrange strategy for simulating particle-laden flows, J. Comput. Phys., 238, 1-31 (2013) · Zbl 1286.76142
[29] Bagnold, R. A.; Taylor, G., Motion of waves in shallow water. Interaction between waves and sand bottoms, (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 187 (1946), The Royal Society), 1-18
[30] Nielsen, P., Coastal Bottom Boundary Layers and Sediment Transport, Vol. 4 (1992), World scientific
[31] Finn, J. R.; Li, M.; Apte, S. V., Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer, J. Fluid Mech., 796, 340-385 (2016) · Zbl 1462.76195
[32] Frank-Gilchrist, D. P.; Penko, A.; Calantoni, J., Investigation of sand ripple dynamics with combined particle image and tracking velocimetry, J. Atmos. Ocean. Technol., 35, 10, 2019-2036 (2018)
[33] Capecelatro, J.; Desjardins, O., An Euler-Lagrange strategy for simulating particle-laden flows, J. Comput. Phys., 238, 1-31 (2013) · Zbl 1286.76142
[34] Smagorinsky, J., General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 3, 99-164 (1963)
[35] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 7, 1760-1765 (1991) · Zbl 0825.76334
[36] Lilly, D. K., A proposed modification of the germano subgrid-scale closure method, Phys. Fluids A, 4, 3, 633-635 (1992)
[37] Meneveau, C.; Lund, T. S.; Cabot, W. H., A Lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech., 319, 353-385 (1996) · Zbl 0882.76029
[38] Tenneti, S.; Garg, R.; Subramaniam, S., Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres, Int. J. Multiph. Flow., 37, 9, 1072-1092 (2011)
[39] Li, X.; Hunt, M. L.; Colonius, T., A contact model for normal immersed collisions between a particle and a wall, J. Fluid Mech., 691, 123-145 (2012) · Zbl 1241.76400
[40] Du Pont, S. C.; Gondret, P.; Perrin, B.; Rabaud, M., Granular avalanches in fluids, Phys. Rev. Lett., 90, 4, Article 044301 pp. (2003)
[41] Shäfer, J.; Dippel, S.; Wolf, D., Force schemes in simulations of granular materials, J. Physique I, 6, 1, 5-20 (1996)
[42] Schmeeckle, M. W.; Nelson, J. M.; Pitlick, J.; Bennett, J. P., Interparticle collision of natural sediment grains in water, Water Resour. Res., 37, 9, 2377-2391 (2001)
[43] Frank, D.; Foster, D.; Sou, I. M.; Calantoni, J.; Chou, P., Lagrangian measurements of incipient motion in oscillatory flows, J. Geophys. Res.: Oceans, 120, 1, 244-256 (2015)
[44] Frank, D.; Foster, D.; Sou, I. M.; Calantoni, J., Incipient motion of surf zone sediments, J. Geophys. Res.: Oceans, 120, 8, 5710-5734 (2015)
[45] Chong, M. S.; Perry, A. E.; Cantwell, B. J., A general classification of three-dimensional flow fields, Phys. Fluids A, 2, 5, 765-777 (1990)
[46] Saric, W. S., Görtler vortices, Annu. Rev. Fluid Mech., 26, 1, 379-409 (1994) · Zbl 0802.76027
[47] Tseng, Y.-H.; Ferziger, J. H., Large-eddy simulation of turbulent wavy boundary flow-illustration of vortex dynamics, J. Turbul., 5, 34, 1-23 (2004) · Zbl 1083.76544
[48] Zedler, E. A.; Street, R. L., Large-eddy simulation of sediment transport: currents over ripples, J. Hydraul. Eng., 127, 6, 444-452 (2001)
[49] Zedler, E. A.; Street, R. L., Sediment transport over ripples in oscillatory flow, J. Hydraul. Eng., 132, 2, 180-193 (2006)
[50] Scandura, P.; Vittori, G.; Blondeaux, P., Three-dimensional oscillatory flow over steep ripples, J. Fluid Mech., 412, 355-378 (2000) · Zbl 0998.76500
[51] Chang, Y. S.; Scotti, A., Entrainment and suspension of sediments into a turbulent flow over ripples, J. Turbul., 4, 19, 1-22 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.