×

Dynamic mode decomposition: an alternative algorithm for full-rank datasets. (English) Zbl 1531.65277

Summary: Dynamic mode decomposition (DMD) is a modal decomposition technique that describes high-dimensional dynamic data using coupled spatial-temporal modes. It combines the main features of performing principal component analysis (PCA) in space, and power spectral analysis in time. The method is equation-free in the sense that it does not require knowledge of the underlying governing equations and is entirely data-driven. The purpose of this paper is to introduce a new algorithm for computing the dynamic mode decomposition in the case of full rank data. The new approach is more economical from a computational point of view, which is an advantage when working with large datasets.

MSC:

65P99 Numerical problems in dynamical systems
37M10 Time series analysis of dynamical systems
65F55 Numerical methods for low-rank matrix approximation; matrix compression
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
Full Text: DOI

References:

[1] BK + 20] Z. Bai, E. Kaiser, J. L. Proctor, J. N. Kutz and S. L. Brunton, Dynamic mode decomposition for compressive system identification, AIAA J. 58 (2020), 561-574. · doi:10.2514/1.J057870
[2] S. Bagheri, Koopman-mode decomposition of the cylinder wake, J. Fluid Mech. 726 (2013), 596-623. · Zbl 1287.76116
[3] + 15] E. Berger, M. Sastuba, D. Vogt, B. Jung and H. B. Amor, Estimation of per-turbations in robotic behavior using dynamic mode decomposition, J. Advanced Robotics 29 (2015), 331-343. · doi:10.1080/01691864.2014.981292
[4] B. W. Brunton, L. A. Johnson, J. G. Ojemann and J. N. Kutz, Extracting spatial-temporal coherent patterns in large-scale neural recordings using dy-namic mode decomposition, J. Neuroscience Methods 258 (2016), 1-15.
[5] K. K. Chen, J. H. Tu and C. W. Rowley, Variants of dynamic mode decom-position: Boundary condition, Koopman, and Fourier analyses, J. Nonlinear Sci. 22 (2012), 887-915. · Zbl 1259.35009
[6] L. Cui and W. Long, Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market, Phys. A: Statist. Mech. Appl. 461 (2016), 498-508.
[7] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Univ. Press, Baltimore, MD, 1996. · Zbl 0865.65009
[8] J. Grosek and J. Nathan Kutz, Dynamic mode decomposition for real-time background/foreground separation in video, arXiv:1404.7592 (2014).
[9] + 17] D. P. Kuttichira, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, Stock price prediction using dynamic mode decomposition, in: 2017 Inter-national Conference on Advances in Computing, Communications and Infor-matics (ICACCI) (Udupi, 2017), 55-60. · doi:10.1109/ICACCI.2017.8125816
[10] KB + 16] J. N. Kutz, S. L. Brunton, B. W. Brunton and J. L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM, 2016. · Zbl 1365.65009 · doi:10.1137/1.9781611974508
[11] J. Mann and J. N. Kutz, Dynamic mode decomposition for financial trading strategies, Quant. Finance 16 (2016), 1643-1655. · Zbl 1400.91558
[12] I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator, Ann. Rev. Fluid Mech. 45 (2013), 357-378. · Zbl 1359.76271
[13] I. Mezić, Spectral properties of dynamical systems, model reduction and decom-positions, Nonlinear Dynam. 41 (2005), 309-325. · Zbl 1098.37023
[14] G. Nedzhibov, Dynamic mode decomposition: a new approach for computing the DMD modes and eigenvalues, Ann. Acad. Rom. Sci. Ser. Math. Appl. 14 (2022), 5-16. · Zbl 1513.65503
[15] J. L. Proctor and P. A. Eckhoff, Discovering dynamic patterns from infectious disease data using dynamic mode decomposition, Internat. Health 7 (2015), 139-145.
[16] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows, J. Fluid Mech. 641 (2009), 115-127. · Zbl 1183.76833
[17] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech. 656 (2010), 5-28. · Zbl 1197.76091
[18] P. J. Schmid, Application of the dynamic mode decomposition to experimental data, Experiments Fluids 50 (2011), 1123-1130.
[19] P. J. Schmid and J. Sesterhenn, Dynamic mode decomposition of numerical and experimental data, in: 61st Annual Meeting of the APS Division of Fluid Dynamics, Amer. Phys. Soc., 2008, 208-231.
[20] A. Seena and H. J. Sung, Dynamic mode decomposition of turbulent cavity ows for selfsustained oscillations, Int. J. Heat Fluid Flows 32 (2011), 1098-1110. [TR + 14] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications, J. Comput. Dynam. 1 (2014), 391-421. · Zbl 1346.37064 · doi:10.3934/jcd.2014.1.391
[21] G. H. Nedzhibov Faculty of Mathematics and Informatics Shumen University Shumen 9700, Bulgaria ORCID: 0000-0002-7422-7369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.