×

Asymptotic behavior of solutions to difference equations of neutral type. (English) Zbl 1531.39001

Summary: We present sufficient conditions for the existence of a solution \(x\) to an equation \[ \Delta^m(x_n - u_nx_{n - k}) = a_nf(x_{n - \tau}) + b_n, \] which is “close” to a given solution \(y\) to the linear homogeneous equation of neutral type \(\Delta^m(y_n - \lambda y_{n-k}) = 0\), where \(\lambda\) is the limit of the sequence \(u\). Closeness of solutions to above equations is understood as \(x_n - y_n = \mathrm{o}(\omega_n)\), where \(\omega\) is a given nonincreasing sequence with positive values. Moreover, we establish under which conditions for a given solution \(x\) to \(\Delta^m(x_n - u_nx_{n - k}) = a_nf(x_{n - \tau}) + b_n\) and a given nonincreasing sequence with positive values \(\omega\) there exists a polynomial sequence \(\varphi\) of degree less than \(m\) such that \(x_n = \varphi(n) + \mathrm{o}(\omega_n)\). Presented conditions strongly depend on \(\lambda\).

MSC:

39A22 Growth, boundedness, comparison of solutions to difference equations
39A12 Discrete version of topics in analysis
34K40 Neutral functional-differential equations

References:

[1] Bohner, M.; Stević, S., Asymptotic behavior of second-order dynamic equations, Appl. Math. Comput., 188, 2, 1503-1512 (2007) · Zbl 1124.39003
[2] Chatzarakis, GE; Diblik, J.; Miliaras, GN; Stavroulakis, IP, Classification of neutral difference equations of any order with respect to the asymptotic behavior of their solutions, Appl. Math. Comput., 228, 77-90 (2014) · Zbl 1364.39019
[3] Dz̆urina, J., Asymptotic behavior of solutions of neutral nonlinear differential equations, Arch. Math., 38, 4, 319-325 (2002) · Zbl 1090.34053
[4] Guo, Z.; Liu, M., Existence of non-oscillatory solutions for a higher-order nonlinear neutral difference equation, Electron. J. Differ. Equ., 146, 1-7 (2010) · Zbl 1201.39009
[5] Hasanbulli, M.; Rogovchenko, YV, Asymptotic behavior of nonoscillatory solutions to n-th order nonlinear neutral differential equations, Nonlinear Anal., 69, 1208-1218 (2008) · Zbl 1157.34057 · doi:10.1016/j.na.2007.06.025
[6] Huang, X.; Xu, Z., Nonoscillatory solutions of certain higher order neutral difference equations, Southeast Asian Bull. Math., 32, 445-458 (2008) · Zbl 1174.39002
[7] Jankowski, R.; Schmeidel, E., Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences, Discrete Contin. Dyn. Syst. (B), 19, 2691-2696 (2014) · Zbl 1304.39016
[8] Karpuz, B.; Rath, RN; Rath, SK, On oscillation and asymptotic behaviour of a higher order functional difference equation of neutral type, Int. J. Differ. Equ., 4, 1, 69-96 (2009)
[9] Li, WT; Cheng, SS, Asymptotic trichotomy for positive solutions of a class of odd order nonlinear neutral difference equations, Comput. Math. Appl., 35, 8, 101-108 (1998) · Zbl 0999.39010 · doi:10.1016/S0898-1221(98)00048-0
[10] Liu, M., Guo, Z.: Solvability of a higher-order nonlinear neutral delay difference equation. Adv. Differ. Equ., Art. ID 767620 (2010) · Zbl 1208.39005
[11] Liu, Z., Jia, M., Kang, S.M., Kwun, Y.C.: Bounded positive solutions for a third order discrete equation. Abstr. Appl. Anal., Art. ID 237036 (2012) · Zbl 1250.39003
[12] Liu, Z.; Xu, Y.; Kang, SM, Global solvability for a second order nonlinear neutral delay difference equation, Comput. Math. Appl., 57, 4, 587-595 (2009) · Zbl 1165.39307 · doi:10.1016/j.camwa.2008.09.050
[13] Migda, J., Iterated remainder operator, tests for multiple convergence of series and solutions of difference equations, Adv. Differ. Equ., 2014, 189, 1-18 (2014) · Zbl 1417.39009
[14] Migda, J., Approximative solutions of difference equations, Electron. J. Qual. Theory Differ. Equ., 13, 1-26 (2014) · Zbl 1324.39017 · doi:10.14232/ejqtde.2014.1.13
[15] Migda, J., Approximative solutions to difference equations of neutral type, Appl. Math. Comput., 268, 763-774 (2015) · Zbl 1410.39006
[16] Migda, J., Asymptotically polynomial solutions to difference equations of neutral type, Appl. Math. Comput., 279, 16-27 (2016) · Zbl 1410.39002
[17] Migda, J.: Approximative solutions to autonomous difference equations of neutral type. Amadora (2018) · Zbl 1406.39001
[18] Migda, M.; Migda, J., On a class of first order nonlinear difference equations of neutral type, Math. Comput. Model., 40, 297-306 (2004) · Zbl 1066.39011 · doi:10.1016/j.mcm.2003.12.006
[19] Migda, M.; Migda, J., Asymptotic properties of solutions of second-order neutral difference equations, Nonlinear Anal., 63, e789-e799 (2005) · Zbl 1160.39306 · doi:10.1016/j.na.2005.02.005
[20] Migda, M.; Migda, J., Oscillatory and asymptotic properties of solutions of even order neutral difference equations, J. Differ. Equ. Appl., 15, 11-12, 1077-1084 (2009) · Zbl 1194.39009 · doi:10.1080/10236190903032708
[21] Migda, M.; Migda, J., Nonoscillatory solutions to second-order neutral difference equations, Symmetry, 10, 6, 207 (2018) · Zbl 1423.34094 · doi:10.3390/sym10060207
[22] Migda, M.; Migda, J.; Zdanowicz, M., On the convergence of solutions to second-order neutral difference equations with quasi-differences, Opusc. Math., 39, 1, 61-75 (2019) · Zbl 1403.39010 · doi:10.7494/OpMath.2019.39.1.61
[23] Migda, J.; Nockowska-Rosiak, M., Asymptotic properties of solutions to difference equations of Sturm-Liouville type, Appl. Math. Comput., 340, 126-137 (2019) · Zbl 1428.39006
[24] Migda, J.; Nockowska-Rosiak, M.; Migda, M., Asymptotic properties of solutions to discrete Volterra type equations, Math. Methods Appl. Sci., 45, 2674-2684 (2022) · Zbl 1529.39009 · doi:10.1002/mma.7946
[25] Stević, S., On the recursive sequence \(x_{n+1}=\frac{A}{\Pi^k_{i=0}x_{n-i}}+\frac{1}{\Pi^{2(k+1)}_{j=k+2} x_{n-j}} \), Taiwan. J. Math., 7, 2, 249-259 (2003) · Zbl 1054.39008 · doi:10.11650/twjm/1500575062
[26] Stević, S., Asymptotic behaviour of second-order difference equation, ANZIAM J., 46, 1, 157-170 (2004) · Zbl 1061.39007 · doi:10.1017/S1446181100013742
[27] Stević, S., Growth estimates for solutions of nonlinear second-order difference equations, ANZIAM J., 46, 3, 459-468 (2005) · Zbl 1069.39016 · doi:10.1017/S1446181100008361
[28] Stević, S., On solutions of a class of systems of nonlinear functional differential equations of neutral type with complicated deviations of an argument, Appl. Math. Comput., 219, 3693-3700 (2012) · Zbl 1311.34148
[29] Stević, S., Existence of bounded solutions of a class of neutral systems of functional differential equations, Appl. Math. Comput., 231, 478-488 (2014) · Zbl 1410.34197
[30] Stević, S., Bounded and periodic solutions to the linear first-order difference equation on the integer domain, Adv. Differ. Equ., 2017, 283, 1-17 (2017) · Zbl 1422.39003
[31] Thandapani, E.; Sundaram, P.; Graef, JR; Spikes, PW, Asymptotic behaviour and oscillation of solutions of neutral delay difference equations of arbitrary order, Math. Slovaca, 47, 5, 539-551 (1997) · Zbl 0941.39006
[32] Thandapani, E.; Marian, SL; Graef, JR, Asymptotic behavior of nonoscillatory solutions of neutral difference equations. IV., Comput. Math. Appl., 45, 6-9, 1461-1468 (2003) · Zbl 1053.39022 · doi:10.1016/S0898-1221(03)00107-X
[33] Thandapani, E.; Arul, R.; Raja, PS, The asymptotic behavior of nonoscillatory solutions of nonlinear neutral type difference equations, Math. Comput. Model., 39, 1457-1465 (2004) · Zbl 1067.39018 · doi:10.1016/j.mcm.2004.07.004
[34] Zhou, Y.; Zhang, BG, Existence of nonoscillatory solutions of higher-order neutral delay difference equations with variable coefficients, Comput. Math. Appl., 45, 6-9, 991-1000 (2003) · Zbl 1052.39015 · doi:10.1016/S0898-1221(03)00074-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.