×

Regularization and separation for evolving surface Cahn-Hilliard equations. (English) Zbl 1531.35328

This work considers the mathematical sides of the problem related to the biophysical phenomena of recent interest related to molecular transport and pattern formation on the cell membrane surface, which can be highly nonuniform itself. Thus, the authors address the Cahn-Hilliard equation when a constant mobility in a logarithmic potential is combined with an evolving surface. For the Cahn-Hilliard system in a weak variational formulation, regularization properties of weak solutions in finite time are proved. As a consequence potentially useful for the practical numerical treatment of the system, a suitable Galerkin approximation is proposed.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C37 Cell biology
35R01 PDEs on manifolds
58J90 Applications of PDEs on manifolds
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Abels, H., Bürger, F., and Garcke, H., Qualitative properties for a system coupling scaled mean curvature flow and diffusion, J. Differential Equations, 349 (2023), pp. 236-268. · Zbl 1510.53103
[2] Abels, H., Bürger, F., and Garcke, H., Short time existence for coupling of scaled mean curvature flow and diffusion, J. Evol. Equ., 23 (2023), pp. 1-46. · Zbl 1509.53097
[3] Adams, R. A. and Fournier, J. F., Sobolev Spaces, , Elsevier, 2004. · Zbl 1098.46001
[4] Alphonse, A., Caetano, D., Djurdjevac, A., and Elliott, C. M., Function spaces, time derivatives and compactness for evolving families of Banach spaces with applications to PDEs, J. Differential Equations, 353 (2023), pp. 268-338. · Zbl 1509.35391
[5] Alphonse, A., Elliott, C. M., and Stinner, B., An abstract framework for parabolic PDEs on evolving spaces, Port. Math., 71 (2015), pp. 1-46. · Zbl 1323.35103
[6] Alphonse, A., Elliott, C. M., and Stinner, B., On some linear parabolic PDEs on moving hypersurfaces, Interfaces Free Bound., 17 (2015), pp. 157-187. · Zbl 1333.35306
[7] Barreira, R., Elliott, C. M., and Madzvamuse, A., The surface finite element method for pattern formation on evolving biological surfaces, J. Math. Biol., 63 (2011), pp. 1095-1119. · Zbl 1234.92007
[8] Barrett, J. W., Garcke, H., and Nürnberg, R., A stable numerical method for the dynamics of fluidic membranes, Numer. Math., 134 (2016), pp. 783-822. · Zbl 1391.76298
[9] Barrett, J. W., Garcke, H., and Nürnberg, R., Finite element approximation for the dynamics of fluidic two-phase biomembranes, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 2319-2366. · Zbl 1383.35153
[10] Baumgart, T., Hess, S. T., and Webb, W. W., Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 425 (2003), pp. 821-824.
[11] Bertozzi, A., Esedoglu, S., and Gillette, A., Analysis of a two-scale Cahn-Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), pp. 913-936, doi:10.1137/060660631. · Zbl 1149.35309
[12] Bertozzi, A., Esedoglu, S., and Gillette, A., Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Process., 16 (2007), pp. 285-291. · Zbl 1279.94008
[13] Caetano, D. and Elliott, C. M., Cahn-Hilliard equations on an evolving surface, European J. Appl. Math., 32 (2021), pp. 937-1000. · Zbl 1479.35902
[14] Cahn, J. W., On spinodal decomposition, Acta Metall. Mater., 9 (1961), pp. 795-801.
[15] Cahn, J. W. and Hilliard, J. E., Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258-267. · Zbl 1431.35066
[16] Case, L. B., Membranes regulate biomolecular condensates, Nat. Cell Biol., 24 (2022), pp. 404-405.
[17] Chatelain, C., Ciarletta, P., and Amar, M. B., Morphological changes in early melanoma development: Influence of nutrients, growth inhibitors and cell-adhesion mechanisms, J. Theoret. Biol., 290 (2011), pp. 46-59. · Zbl 1397.92318
[18] Cohen, D. S. and Murray, J. D., A generalized diffusion model for growth and dispersal in a population, J. Math. Biol., 12 (1981), pp. 237-249. · Zbl 0474.92013
[19] Conti, M. and Giorgini, A., Well-posedness for the Brinkman-Cahn-Hilliard system with unmatched viscosities, J. Differential Equations, 268 (2020), pp. 6350-6384. · Zbl 1434.35087
[20] Cristini, V. and Lowengrub, J., Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, 2010.
[21] Dolgin, E., What lava lamps and vinaigrette can teach us about cell biology, Nature, 555 (2018), pp. 300-302.
[22] Dolgin, E., The shape-shifting blobs that shook up cell biology, Nature, 611 (2022), pp. 24-27.
[23] Dziuk, G. and Elliott, C. M., Finite element methods for surface partial differential equations, Acta Numer., 22 (2013), pp. 289-396. · Zbl 1296.65156
[24] Dziuk, G., Kroner, D., and Muller, T., Scalar conservation laws on moving hypersurfaces, Numer. Math., 15 (2013), pp. 203-236. · Zbl 1350.35115
[25] Eilks, C. and Elliott, C. M., Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method, J. Comput. Phys., 227 (2008), pp. 9727-9741. · Zbl 1149.76027
[26] Elliott, C. M., The Cahn-Hilliard Model for the Kinetics of Phase Separation, , Birkhäuser Verlag, Basel, Switzerland, 1989, pp. 35-73. · Zbl 0692.73003
[27] Elliott, C. M. and Luckhaus, S., A Generalised Diffusion Equation for Phase Separation of a Multi-component Mixture with Interfacial Free Energy, , 1991.
[28] Elliott, C. M. and Ranner, T., Evolving surface finite element method for the Cahn-Hilliard equation, Numer. Math., 129 (2015), pp. 483-534. · Zbl 1312.65159
[29] Elliott, C. M. and Ranner, T., A unified theory for continuous-in-time evolving finite element space approximations to partial differential equations in evolving domains, IMA J. Numer. Anal., 41 (2021), pp. 1696-1845. · Zbl 07528292
[30] Elliott, C. M., Stinner, B., and Venkataraman, C., Modelling cell motility and chemotaxis with evolving surface finite elements, J. Roy. Soc. Interface, 9 (2012), pp. 3027-3044.
[31] Embar, A., Dolbow, J., and Fried, E., Microdomain evolution on giant unilamellar vesicles, Biomech. Model. Mechanobiol., 12 (2013), pp. 597-615.
[32] Erlebacher, J., Aziz, M., Karma, A., Dimitrov, N., and Sieradzki, K., Evolution of nanoporosity in dealloying, Nature, 410 (2001), pp. 450-453.
[33] Fontana, L., Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv., 68 (1993), pp. 415-454. · Zbl 0844.58082
[34] Gal, C. G., Giorgini, A., and Grasselli, M., The separation property for 2D Cahn-Hilliard equations: Local, nonlocal and fractional energy cases, Discrete Contin. Dyn. Syst., 43 (2023), pp. 2270-2304, doi:10.3934/dcds.2023010. · Zbl 1514.35039
[35] Garcke, H., Lam, K. F., and Stinner, B., Diffuse interface modelling of soluble surfactants in two-phase flow, Commun. Math. Sci., 12 (2014), pp. 1475-1522. · Zbl 1319.35309
[36] Giorgini, A., Grasselli, M., and Miranville, A., The Cahn-Hilliard-Oono equation with singular potential, Math. Models Methods Appl. Sci., 27 (2017), pp. 2485-2510. · Zbl 1386.35023
[37] Hess, S. T., Kumar, M., Verma, A., Farrington, J., Kenworthy, A., and Zimmerberg, J., Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin, J. Cell Biol., 169 (2005), pp. 965-976.
[38] Khain, E. and Sander, L. M., Generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129.
[39] Li, S., Lowengrub, J., and Voigt, A., Locomotion, wrinkling, and budding of a multicomponent vesicle in viscous fluids, Commun. Math. Sci., 10 (2012), pp. 645-670. · Zbl 1282.35420
[40] Lowengrub, J. and Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A, 454 (1998), pp. 2617-2654. · Zbl 0927.76007
[41] Mercker, M., Ptashnyk, M., Kühnle, J., Hartmann, D., Weiss, M., and Jäger, W., A multiscale approach to curvature modulated sorting in biological membranes, J. Theoret. Biol., 301 (2012), pp. 67-82. · Zbl 1397.92062
[42] Miranville, A., The Cahn-Hilliard Equation: Recent Advances and Applications, , SIAM, Philadelphia, PA, 2019, doi:10.1137/1.9781611975925. · Zbl 1446.35001
[43] Miranville, A. and Zelik, S., Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), pp. 545-582. · Zbl 1050.35113
[44] Nagai, T., T. Senba, and Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), pp. 411-433. · Zbl 0901.35104
[45] Novick-Cohen, A. and Segel, L. A., Nonlinear aspects of the Cahn-Hilliard equation, Phys. D, 10 (1984), pp. 277-298.
[46] O’Connor, D. and Stinner, B., The Cahn-Hilliard Equation on an Evolving Surface, preprint, https://arxiv.org/abs/1607.05627, 2016.
[47] Olshanskii, M., Xu, X., and Yushutin, V., A finite element method for Allen-Cahn equation on deforming surface, Comput. Math. Appl., 90 (2021), pp. 148-158. · Zbl 1524.65580
[48] Ono, A. and Freed, E. O., Plasma membrane rafts play a critical role in HIV-1 assembly and release, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 13925-13930.
[49] Sahu, A., Sauer, R. A., and Mandadapu, K. K., Irreversible thermodynamics of curved lipid membranes, Phys. Rev. E, 96 (2017), 042409.
[50] Snead, W. T. and Gladfelter, A. S., The control centers of biomolecular phase separation: How membrane surfaces, PTMs, and active processes regulate condensation, Mol. Cell, 76 (2019), pp. 295-305.
[51] Venkataraman, C., Sekimura, T., Gaffney, E. A., Maini, P. K., and Madzvamuse, A., Modeling parr-mark pattern formation during the early development of Amago trout, Phys. Rev. E, 84 (2011), 041923.
[52] Wise, S. M., Lowengrub, J. S., Frieboes, H. B., and Cristini, V., Three-dimensional multispecies nonlinear tumor growth-I: Model and numerical method, J. Theoret. Biol., 253 (2008), pp. 524-543. · Zbl 1398.92135
[53] Xu, J., Vilanova, G., and Gomez, H., A mathematical model coupling tumor growth and angiogenesis, PloS One, 11 (2016), e0149422.
[54] Xue, S., Zhou, F., Zhao, T., Zhao, H., Wang, X., Chen, L., Li, J.-p., and Luo, S.-Z., Phase separation on cell surface facilitates bFGF signal transduction with heparan sulphate, Nat. Commun., 13 (2022), pp. 1-10.
[55] Yushutin, V., Quaini, A., and Olshanskii, M., Numerical modelling of phase separation on dynamic surfaces, J. Comput. Phys., 407 (2020), 109126. · Zbl 07504688
[56] Zimmermann, C., Toshniwal, D., Landis, C. M., Hughes, T. J. R., Mandadapu, K. K., and Sauer, R. A., An isogeometric finite element formulation for phase transitions on deforming surfaces, Comput. Methods Appl. Mech. Engrg., 351 (2019), pp. 441-477. · Zbl 1441.74286
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.