×

From BGK-alignment model to the pressured Euler-alignment system with singular communication weights. (English) Zbl 1531.35238

Summary: This paper is devoted to a rigorous derivation of the isentropic Euler-alignment system with singular communication weights \(\phi_\alpha(x) = | x |^{- \alpha}\) for some \(\alpha > 0\). We consider a kinetic BGK-alignment model consisting of a kinetic BGK-type equation with a singular Cucker-Smale alignment force. By taking into account a small relaxation parameter, which corresponds to the asymptotic regime of a strong effect from the BGK operator, we quantitatively derive the isentropic Euler-alignment system with pressure \(p(\rho) = \rho^\gamma\), \(\gamma = 1 + \frac{2}{d}\) from that kinetic equation.

MSC:

35Q31 Euler equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
35B40 Asymptotic behavior of solutions to PDEs
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Ahn, S. M.; Choi, H.; Ha, S.-Y.; Lee, H., On collision-avoiding initial configurations to Cucker-Smale type flocking models. Commun. Math. Sci., 625-643 (2012) · Zbl 1321.92084
[2] Berthelin, F.; Bouchut, F., Solution with finite energy to a BGK system relaxing to isentropic gas dynamics. Ann. Fac. Sci. Toulouse Math. (6), 605-630 (2000) · Zbl 1006.82023
[3] Berthelin, F.; Vasseur, A., From kinetic equations to multidimensional isentropic gas dynamics before shocks. SIAM J. Math. Anal., 1807-1835 (2005) · Zbl 1130.35090
[4] Bouchut, F., Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys., 113-170 (1999) · Zbl 0957.82028
[5] Brenier, Y., Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ., 737-754 (2000) · Zbl 0970.35110
[6] Carrillo, J. A.; Choi, Y.-P., Mean-field limits: from particle descriptions to macroscopic equations. Arch. Ration. Mech. Anal., 1529-1573 (2021) · Zbl 1478.35170
[7] Carrillo, J. A.; Choi, Y.-P.; Jung, J., Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces. Math. Models Methods Appl. Sci., 327-408 (2021) · Zbl 1483.35267
[8] Carrillo, J. A.; Choi, Y.-P.; Hauray, M., Local well-posedness of the generalized Cucker-Smale model with singular kernels, 17-35 · Zbl 1356.35252
[9] Carrillo, J. A.; Choi, Y.-P.; Mucha, P. B.; Peszek, J., Sharp conditions to avoid collisions in singular Cucker-Smale interactions. Nonlinear Anal., Real World Appl., 317-328 (2017) · Zbl 1383.34069
[10] Carrillo, J. A.; Choi, Y.-P.; Pérez, S., A review on attractive-repulsive hydrodynamics for consensus in collective behavior, 259-298
[11] Carrillo, J. A.; Choi, Y.-P.; Tadmor, E.; Tan, C., Critical thresholds in 1D Euler equations with nonlocal forces. Math. Models Methods Appl. Sci., 185-206 (2016) · Zbl 1356.35174
[12] Carrillo, J. A.; Fornasier, M.; Rosado, J.; Toscani, G., Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal., 218-236 (2010) · Zbl 1223.35058
[13] Chen, L.; Tan, C.; Tong, L., On the global classical solution to compressible Euler system with singular velocity alignment. Methods Appl. Anal., 153-172 (2021) · Zbl 1510.35232
[14] Choi, Y.-P., The global Cauchy problem for compressible Euler equations with a nonlocal dissipation. Math. Models Methods Appl. Sci., 185-207 (2019) · Zbl 1414.35155
[15] Choi, Y.-P.; Ha, S.-Y.; Li, Z., Emergent dynamics of the Cucker-Smale flocking model and its variants, 299-331
[16] Y.-P. Choi, B.-H. Hwang, Global existence of weak solutions to a BGK model relaxing to the barotropic Euler equations, preprint. · Zbl 1528.35106
[17] Choi, Y.-P.; Jung, J., Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain. Math. Models Methods Appl. Sci., 2213-2295 (2021) · Zbl 1481.35049
[18] Y.-P. Choi, J. Jung, Local well-posedness for the compressible Navier-Stokes-BGK model in Sobolev spaces with exponential weight, preprint. · Zbl 1537.35333
[19] Choi, Y.-P.; Kim, J., Rigorous derivation of the Euler-alignment model with singular communication weights from a kinetic Fokker-Planck-alignment model. Math. Models Methods Appl. Sci., 31-65 (2023) · Zbl 1522.35381
[20] Choi, Y.-P.; Zhang, X., One dimensional singular Cucker-Smale model: uniform-in-time mean-field limit and contractivity. J. Differ. Equ., 428-459 (2021) · Zbl 1466.34044
[21] Constantin, P.; Drivas, T. D.; Shvydkoy, R., Entropy hierarchies for equations of compressible fluids and self-organized dynamics. SIAM J. Math. Anal., 3073-3092 (2020) · Zbl 1444.92139
[22] Cucker, F.; Smale, S., Emergent behavior in flocks. IEEE Trans. Autom. Control, 852-862 (2007) · Zbl 1366.91116
[23] Dafermos, C., The second law of thermodynamics and stability. Arch. Ration. Mech. Anal., 167-179 (1979) · Zbl 0448.73004
[24] DiPerna, R., Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. (1979) · Zbl 0409.35057
[25] Golse, F.; Saint-Raymond, L., The Vlasov-Poisson system with strong magnetic field. J. Math. Pures Appl., 791-817 (1999) · Zbl 0977.35108
[26] Lear, D.; Shvydkoy, R., Unidirectional flocks in hydrodynamic Euler alignment system II: singular models. Commun. Math. Sci., 807-828 (2021) · Zbl 1476.35204
[27] Lear, D.; Shvydkoy, R., Existence and stability of unidirectional flocks in hydrodynamic Euler alignment systems. Anal. PDE, 175-196 (2022)
[28] Leslie, T. M.; Shvydkoy, R., On the structure of limiting flocks in hydrodynamic Euler alignment models. Math. Models Methods Appl. Sci., 2419-2431 (2019) · Zbl 1428.92130
[29] Figalli, A.; Kang, M.-J., A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment. Anal. PDE, 843-866 (2019) · Zbl 1405.35206
[30] Ha, S.-Y.; Liu, J.-G., A simple proof of Cucker-Smale flocking dynamics and mean field limit. Commun. Math. Sci., 297-325 (2009) · Zbl 1177.92003
[31] Ha, S.-Y.; Tadmor, E., From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Models, 415-435 (2008) · Zbl 1402.76108
[32] Karper, T. K.; Mellet, A.; Trivisa, K., Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal., 215-243 (2013) · Zbl 1295.35371
[33] Karper, T. K.; Mellet, A.; Trivisa, K., Hydrodynamic limit of the kinetic Cucker-Smale flocking model. Math. Models Methods Appl. Sci., 131-163 (2015) · Zbl 1309.35180
[34] Minakowski, P.; Mucha, P. B.; Peszek, J.; Zatorska, E., Singular Cucker-Smale Dynamics, Active Particles, vol. 2, 201-243 (2019), Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer: Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer Cham · Zbl 1461.76513
[35] Mellet, A.; Vasseur, A., Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations. Commun. Math. Phys., 573-596 (2008) · Zbl 1155.35415
[36] Mucha, P. B.; Peszek, J., The Cucker-Smale equation: singular communication weight, measure-valued solutions and weak-atomic uniqueness. Arch. Ration. Mech. Anal., 273-308 (2018) · Zbl 1384.35138
[37] Peszek, J., Existence of piecewise weak solutions of a discrete Cucker-Smale’s flocking model with a singular communication weight. J. Differ. Equ., 2900-2925 (2014) · Zbl 1304.34092
[38] Poyato, D.; Soler, J., Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models. Math. Models Methods Appl. Sci., 1089-1152 (2017) · Zbl 1369.35050
[39] Saint-Raymond, L., Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes in Mathematics (2009), Springer: Springer Berlin · Zbl 1171.82002
[40] Shvydkoy, R., Dynamics and Analysis of Alignment Models of Collective Behavior. Nečas Center Series (2021), Birkhäuser/Springer: Birkhäuser/Springer Cham, xiv+208 pp · Zbl 1471.37001
[41] Tadmor, E.; Tan, C., Critical thresholds in flocking hydrodynamics with nonlocal alignment. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. (2014)
[42] Tan, C., On the Euler-alignment system with weakly singular communication weights. Nonlinearity, 1907-1924 (2020) · Zbl 1442.35479
[43] Villani, C., A review of mathematical topics in collisional kinetic theory. Handb. Math. Fluid Dyn., 71-305 (2002) · Zbl 1170.82369
[44] Yau, H.-T., Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys., 63-80 (1991) · Zbl 0725.60120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.